
Rigorous computation of
Maass cusp forms

Andrei Seymour-Howell

School of Mathematics
University of Bristol

A dissertation submitted to the University of Bristol in

accordance with the requirements of the degree of

Doctor of Philosophy in the Faculty of Science.

February 2023

Word count: 16824 words

Abstract

We describe three new algorithms related to the rigorous computation of Maass cusp

forms.

Firstly, we describe a novel algorithm to compute and rigorously verify the

Laplace eigenvalue and Hecke eigenvalues of Maass cusp forms of squarefree level

and trivial character. The main tool we use is an explicit version of the Selberg

trace formula.

We then describe a new algorithm to unconditionally compute the class numbers

of real quadratic fields. Again, the main tool used here is an explicit trace formula

for Maass forms of level 1 and a dataset of rigorously verified Maass forms.

Finally, we describe a method to extend Hejhal’s algorithm to rigorously zoom

into a Laplace eigenvalue of a Maass form, once we know it exists in a small interval.

With this, we derive a test to show whether or not the main matrix appearing in this

algorithm for level 1 Maass forms is well-conditioned as the matrix size increases.

i

Acknowledgements

Firstly, I would like to thank Andrew Booker for being a wonderful supervisor. I

appreciate your insightful explanations and your patience in describing them to me.

Your encouragement of my work over the years has played a strong part in my

success and in improving my own self belief in my mathematical ability.

I would also like to thank Min Lee for the numerous helpful discussions; fellow

PGR student Kieran Child for sharing your tips on computing Maass forms; David

Lowry-Duda and Andrew Sutherland for your helpful discussions and comments on

my work; and Fredrik Strömberg for kick-starting my interest in number theory at

Nottingham and for giving useful advice on how to conduct research.

The PGR community at Bristol has been fantastic and I could not think of a

better place or a better group of people to have been a part of for my PhD. In

particular, I would like to thank Ayesha Hussain for helping me with any problems

I had during the PhD and for always being down for a chat; Alex Modell for showing

me what Bristol has to offer, whether it be a new pub or the best cake shops in the

city; Emily Hall for laughing at all my jokes (even the bad ones); and Harry Petyt

for being my brother in bulk. You all have made this experience vastly enjoyable

and I will miss all our escapades in the Pit.

Outside of academia I have been very fortunate in having a great mix of friends.

In this I would like to thank Nina, Kieran, Sophie, Kirsty, Fern, Shelley, Ben, Jame

and Jordan. Thank you all for making me shut up talking about Maass forms and

dragging me to experience all the fun things life has to offer. Every one of you gave

me support when things got tough but also were there to celebrate the victories

along the way, and for that I am forever grateful.

Finally, I would like to thank my family. Thank you for being a strong support

when things got hard and for giving me the continual feeling of comfort and that

better times lie ahead. None of this would have been possible without you.

ii

Author’s declaration

I declare that the work in this dissertation was carried out in accordance with the

requirements of the University’s Regulations and Code of Practice for Research

Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the

candidate’s own work. Work done in collaboration with, or with the assistance of,

others, is indicated as such. Any views expressed in the dissertation are those of the

author.

SIGNED: DATE:

iii

Contents

Introduction 1

1 Background 5

1.1 Hecke congruence subgroups . 6

1.2 Maass forms . 7

1.3 Fourier series . 8

1.4 Involutions . 9

1.5 Reflection operator . 9

1.6 Hecke operators . 10

1.7 Oldforms and newforms . 11

1.8 L-function . 12

1.9 Selberg Trace formula . 13

1.10 Open conjectures . 14

2 Trace formula algorithm for Maass forms 16

2.1 Trace Formula Algorithm . 16

2.2 The Selberg Trace Formula for level 1 23

2.3 The Selberg Trace Formula for squarefree level N > 1 27

2.4 Choice of test function . 28

2.5 Computational results . 33

3 Unconditional computation of real quadratic class numbers 39

3.1 Verification algorithm . 40

3.2 Rigorous computation of the Hecke eigenvalues 53

3.3 Computation . 59

4 Rigorous implementation of Hejhal’s algorithm 61

4.1 Hejhal’s algorithm for level 1 . 61

4.2 Implementing Hejhal’s algorithm rigorously to improve precision . . . 63

4.3 Proof of well-conditioned Hejhal system for even forms 65

4.4 Explicitly finding the O-constant . 68

4.5 Odd case . 81

A K-Bessel Bounds 87

B Rigorous numerical quadrature 92

iv

Introduction

The theory of modular forms has been studied for over 200 years. Mathematicians

in the early 19th century, such as Gauss and Jacobi, discovered early examples of

modular forms through elliptic functions. Later in the 19th century, Klein further

developed the theory of elliptic functions and modular forms. This was followed by

work by Ramanujan in the early 20th century with work on his τ function, which

gave the first construction of what we now call a cusp form, and further “modular”

identities with certain infinite products.

One of the biggest breakthroughs in the theory of modular forms came from

Hecke, who studied the structures of the spaces of modular forms. In his work he

introduced certain operators, now known as Hecke operators, to these objects to

help prove the multiplicity of the Fourier coefficients of modular forms, generalising

the work of Mordell on the τ function. Hecke’s research helped to describe the

framework with which to study modular forms. The theory of modular forms has

grown immeasurably since and, as a result, has found connections in many different

areas. Most notably in the theory of elliptic curves, culminating in Wiles’ remarkable

proof of Fermat’s last theorem [Wil95]. Modular forms have also been used in sphere

packing [Via17,CKM+17] and in the proof of the monstrous moonshine conjecture

and its connections to string theory [Bor92].

Up until the mid-20th century, all modular forms that had been constructed

or known to exist were holomorphic. This changed, when in 1949 Maass [Maa49]

(a student of Hecke) constructed the first examples of non-holomorphic analogues

of modular forms. Hecke in 1926 constructed his Hecke L-function over imaginary

quadratic fields and showed that they were in correspondence with holomorphic

modular forms. He then gave Maass the problem of doing the same thing but for

real quadratic fields. For this, Maass did not get the classical holomorphic modular

forms and instead had to construct non-holomorphic modular forms to show this

correspondence, giving examples of the general object we now call Maass forms.

These connections between various types of modular forms and other objects are

now heavily studied under the Langlands program.

However, after Maass’ work, it was still not known if Maass forms existed in

general in the same way as modular forms. For odd Maass forms, their existence

and infinitude can be shown directly from the automorphic and Dirichet boundary

conditions. For even Maass forms, this was answered by Selberg [Sel56] in the 1950s

with his construction of the Selberg trace formula. Not only did Selberg prove their

existence, but also proved that there are infinitely many of them. For a more modern

1

Introduction

proof of their existence and infinitude, see [LV07]. The Selberg trace formula plays

a pivotal role in the study of Maass forms and is the main tool used throughout

this thesis. More in depth studies on the theory of Maass forms can be found

in [Iwa02,Bum97,CS17,Gol06].

When it comes to constructing examples of Maass forms, the only known explicit

cases are the ones due to Maass or the ones appearing from certain Galois repre-

sentations [Lan80,Tun81]. Instead in general, we rely on numerical computations.

Associated with each Maass form is its Laplace eigenvalue and its (infinite) list of

Hecke eigenvalues. By computing Maass forms, we mean computing numerical ap-

proximations to each Maass form’s Laplace eigenvalue and Hecke eigenvalues up to

some limit. Further, by rigorous computation, we mean that we can also compute

rigorously provable error bounds on each of these approximations.

The history on the numerical computations of Maass cusp forms is quite broad,

with the first numerical computations occurring in the early 1970s [Car71]. The

main development came when Hejhal introduced an algorithm to numerically com-

pute Maass cusp forms in the 1990s [Hej99]. This was later generalised to general

congruence and non-congruence subgroups by his student Strömberg in 2006 [Str05].

This algorithm remains state of the art and works very well in practice. Unfortu-

nately however, this algorithm is non-rigorous since it relies on a heuristic argument.

Since then, there has been progress towards numerically verifying numerical

computations of Maass cusp forms, most notably from Booker, Strömbergsson and

Venkatesh [BSV06], who derived a method to numerically verify Maass cusp forms

for PSL(2,Z). Using this method they verified the first 10 Laplace eigenvalues to

100 decimal places. This method has recently been generalised to general level N

and character by Child in 2022 [Chi22] in his thesis.

Computations of Maass cusp forms have also been studied from a physics back-

ground, mainly due to their connection to quantum chaos. Roughly, if we consider a

free quantum particle with mass m0 on a surface M, then quantum mechanics tells

us that we can describe the system by a wave function ψ. The Schrödinger equation

describes the evolution of this quantum system over time and is given by

iℏ
∂ψ

∂t
=

ℏ2

2m0

∆ψ,

where ℏ is Planck’s constant and ∆ is the Laplace–Beltrami operator on the surface.

By separation of variables, we find that the time independent part of ψ, denoted by

2

Introduction

ϕ, satisfies the time independent Schrödinger equation, given by

∆ϕ = λϕ.

Since ψ is a probability measure, we must have that ⟨ϕ, ϕ⟩ = 1, where ⟨·, ·⟩ denotes
the L2 norm on the space. Now if we consider certain surfaces, namely hyperbolic

surfaces that correspond to subgroups of the modular group PSL(2,Z), then we get

precisely Maass forms. For applications of Maass forms to physics, see [BGGS97]

for results related to quantum chaos and [AST12] for cosmology.

The main result of this thesis is a novel way to compute and rigorously verify

examples of Maass cusp forms. As noted before, the main tool used throughout this

work is an explicit version of the Selberg trace formula, derived by Strömbergsson

[Str16]. We note that explicit forms of the Selberg trace formula have been used

before by Booker and Strömbergsson [BS07] for computations to numerically verify

the Selberg eigenvalue conjecture. However, they were mainly focused on proving

the non-existence of Maass forms in an interval, rather than computing individual

examples.

Throughout this thesis, the computations described are predominately imple-

mented in interval arithmetic, namely using the ball-arithmetic C-library Arb [Joh17].

The main reason for this, is that it allows us to describe our numerical results as

rigorous. The main downside to this is the extra work required in deriving explicit

error bounds and how to efficiently implement these. Thankfully the Arb library

makes this process considerably easier and we highly encourage any reader to give

it a try.

Summary of the chapters

Chapter 1 gives a background to the study of Maass forms, stating the main prelim-

inary theory needed for this thesis. Those with a background in classical modular

forms should find a lot of this theory familiar.

In Chapter 2 we introduce and describe the novel way to compute Maass forms

using the Selberg trace formula. The main tool used is an explicit version of the

Selberg trace formula with Hecke operators. Briefly, this allows us to compute sums

of the form

∞∑
j=1

aj(m)h(rj)

for some test function h, where the rj are the Laplace eigenvalues describing the

3

Introduction

Maass forms, and the aj(m) are their corresponding Hecke eigenvalues. The main

idea is that we construct a quadratic form, with matrix elements relating to Selberg

trace formula values. We then construct a Rayleigh quotient to calculate the error

for each Laplace eigenvalue. A lot of this chapter is describing how to implement

an explicit form of the Selberg trace formula for computations like these.

In Chapter 3 we introduce a novel method to unconditionally compute real

quadratic class numbers. Again, the main tool used here is an explicit version

of the Selberg trace formula. The reason for this is that in the Selberg trace formula

there is a term that sums over real quadratic class numbers (L-function values more

specifically). The main idea is to first compute the class numbers conditionally,

which will give us a lower bound on this sum, then we use the Selberg trace formula

as an upper bound and numerically show that they match up. All these steps are

made rigorous and we implement this algorithm and unconditionally compute the

class number for all real quadratic fields with discriminant up to d = 1011.

Finally, in Chapter 4 we describe a method to implement a version of Hejhal’s

algorithm rigorously, once we know our Laplace eigenvalue exists in some provable

interval. However, we do not currently know beforehand whether or not this algo-

rithm converges. We then describe a test to show whether or not the main matrix

appearing in Hejhal’s algorithm for level 1 Maass forms is well-conditioned as you in-

crease the matrix size, once we know our Laplace eigenvalue exists in some provable

interval.

4

Chapter 1

Background

Let H = {z = x + iy ∈ C | y > 0} denote the hyperbolic upper half-plane with

hyperbolic metric and area measure

ds2 =
1

y
(dx2 + dy2), dµ =

1

y2
dx dy,

respectively. The general linear group GL(2,R) acts on H via the the group action

γz =

(
a b

c d

)
z =


az + b

cz + d
if det γ > 0,

az + b

cz + d
if det γ < 0,

for all γ ∈ GL(2,R). We note that any scalar multiple of γ does not change this

action, hence we can instead just consider the group of all isometries given by

PGL(2,R) = GL(2,R)/{±Id}, which we call the projective general linear group.

We shall consider the subgroup of PGL(2,R) of orientation persevering isometries

PSL(2,R) = SL(2,R)/{±Id}, which we call the projective special linear group. This

is a subgroup of index 2 and has a coset representative of

J =

(
1 0

0 −1

)
,

which corresponds to the map z 7→ −z. We call this map the reflection operator

and it will be discussed in Section 1.5. We note that all the matrices in SL(2,R)
have determinant 1.

For us, the only subgroups of PSL(2,R) we are interested in are the discrete

subgroups. The main discrete subgroup, which we will call the full modular group,

is

PSL(2,Z) ∼= SL(2,Z)/{±Id}.

5

1.1. Hecke congruence subgroups

Figure 1.1: Plot of the fundamental domain F for PSL(2,Z).

We note that SL(2,Z) is generated by the two matrices

T =

(
1 1

0 1

)
S =

(
0 −1

1 0

)
,

with Möbius transformations z 7→ z + 1 and z 7→ −1
z
respectively.

We further define the fundamental domain F of this action of PSL(2,Z) by

F = {z = x+ iy ∈ H | |x| ≤ 1/2, |z| ≥ 1}.

1.1 Hecke congruence subgroups

We shall now describe certain subgroups of PSL(2,Z), namely the congruence sub-

groups. Let N be a positive integer. We define the principal congruence subgroup

Γ(N) ⊂ PSL(2,Z) of level N to be

Γ(N) =

{(
a b

c d

)
∈ PSL(2,Z)

∣∣∣∣∣
(
a b

c d

)
≡ ±

(
1 0

0 1

)
mod N

}
.

6

1.2. Maass forms

This is a normal subgroup of PSL(2,Z) with finite index. Furthermore, we call

a subgroup Γ ⊂ PSL(2,Z) a congruence subgroup if Γ(N) ⊂ Γ, for some N . The

main example of a congruence subgroup we shall be using are the Hecke congruence

subgroups Γ0(N) defined by

Γ0(N) =

{(
a b

c d

)
∈ PSL(2,Z)

∣∣∣∣∣ c ≡ 0 mod N

}
.

The index of this subgroup is given by

[PSL(2,Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
.

We note that Γ0(1) = PSL(2,Z).

1.2 Maass forms

With the hyperbolic metric defined before on H, we have the Laplace–Beltrami

operator given by

∆ = −y2
(
∂2

∂x2
+

∂2

∂y2

)
.

We define a Maass form of level N and weight 0 to be a non-constant, smooth

function f : Γ0(N)\H → C that satisfies the following properties:

1. f(γz) = f(z) for all z ∈ H and γ ∈ Γ0(N);

2. f has polynomial growth at the cusps of Γ0(N);

3. f ∈ L2(Γ0(N)\H);

4. f is an eigenfunction of the Laplace–Beltrami operator ∆ on H.

We shall also write the Laplace eigenvalue as λ = 1
4
+ r2 (we shall refer to both λ

and r as the Laplace eigenvalue). Furthermore, if f vanishes at the cusps of Γ0(N),

then we call f a Maass cusp form. For the rest of this thesis, we shall only focus on

the case of Maass cusp forms. Additionally, we remark that here, and throughout

this thesis, we shall only be considering the case when we have trivial character.

We shall denote S(Γ0(N)) to be the space of Maass cusp forms of level N and

similarly, denote Sλ(Γ0(N)) to be the space of Maass cusp forms of level N and

Laplace eigenvalue λ.

7

1.3. Fourier series

Furthermore, the space Sλ(Γ0(N)) is a finite-dimensional Hilbert space with

respect to the Petersson inner product, defined by

⟨f, g⟩ =
∫
Γ0(N)\H

fg dµ,

where the integration is taken over the fundamental domain for Γ0(N).

Similar to classical modular forms, we shall also define the (weight 0) slash

operator for f ∈ Sλ(Γ0(N)) by

f|γ(z) = f(γz)

for all z ∈ H and γ ∈ PGL(2,Z).

1.3 Fourier series

Since we have that the matrix T =

(
1 1

0 1

)
∈ Γ0(N) for all N ∈ N with correspond-

ing Möbius transformation z 7→ z+1, we have that our Maass forms admit a Fourier

series. Before we can give a description of this series, we must first introduce the

K-Bessel function.

Definition 1.3.1 (K-Bessel function). Let x be a positive real number and ν ∈ C.
Then we define the K-Bessel function by

Kν(x) :=
1

2

∫ ∞

−∞
e−x cosh(t)+νt dt =

∫ ∞

0

cosh(νt)e−x cosh(t) dt.

We have that y = Kν(x) satisfies the differential equation

y′′ +
y′

x
−
(
1 +

ν2

x2

)
y = 0.

For all the work that we will be doing, we shall assume ν is purely imaginary, i.e

ν = ir for some real r. We shall also mainly be considering the Whittaker function

of the form Wir(x) =
√
xKir(x). This function plays a key role in the computation

of Maass forms, and will appear many times in this thesis. In Appendix A we shall

provide further facts about this function.

We can now state the Fourier series for a Maass cusp form.

Proposition 1.3.1. Let f ∈ Sλ(Γ0(N)) be a Maass cusp form of level N and Laplace

eigenvalue λ = 1
4
+ r2 > 0. Then, for all z ∈ H, f admits a Fourier series of the

8

1.4. Involutions

form

f(z) = f(x+ iy) =
∑
n̸=0

an√
|n|
Wir(2π|n|y)e2πinx, (1.1)

where the an are its Fourier coefficients.

1.4 Involutions

In linear algebra, an involution on a vector space V is a linear operator T : V → V

such that T 2 = I, where I is the identity matrix. For us, we call a linear operator

T : Sλ(Γ0(N)) → Sλ(Γ0(N)) a Γ0(N)-involution if

T 2f = f,

for all f ∈ Sλ(Γ0(N)), i.e. T 2 is the identity operator. These involutions will allow

us to categorise Maass forms in many different ways.

The two main involutions we shall be using are the:

1. Fricke involution - Let WN =

(
0 − 1√

N√
N 0

)
∈ PSL(2,R). This is a Γ0(N)-

involution, called the Fricke involution when acting through the slash operator.

The corresponding Möbius transformation is z 7→ −1
Nz

. A Maass cusp form

f ∈ Sλ(Γ0(N)) will have an eigenvalue of ±1 with respect to this involution

which we call the Fricke sign.

2. Reflection operator - Let J =

(
1 0

0 −1

)
. We saw this matrix at the start of

this chapter and this is an involution by the map z 7→ −z. More details of

this operator are given in the next section.

1.5 Reflection operator

From Figure 1.1 we see that the fundamental domain of PSL(2,Z) has an obvious

symmetry, namely reflection in the imaginary axis. This symmetry will allow us to

split our Maass forms into two separate groups called even and odd forms. This

categorisation will occur due to certain boundary conditions of the fundamental

domain.

Precisely, we shall consider the reflection operator J =

(
1 0

0 −1

)
, with corre-

sponding map z 7→ −z. Now, we can diagonalise Sλ(Γ0(N)) with respect to J

9

1.6. Hecke operators

and the eigenvalues of this involution will be 1 or −1. We say that f is even if

f(z) = f(−z) and odd is f(z) = −f(−z). For an even form, its Fourier coefficients

an satisfy an = a−n, and similarly, for a odd form an = −a−n. From the Fourier

series given in Proposition 1.3.1, we can replace the exponentials with a cosine/sine

series for even/odd forms respectively.

1.6 Hecke operators

The classical theory of Hecke operators for holomorphic forms translates very easily

to the case of Maass forms. Here we shall just give the definition of Hecke operators

and some facts.

To begin, let f ∈ Sλ(Γ0(N)) and n a non-zero integer coprime to N . We define

the nth Hecke operator Tn by

Tnf(z) =
1√
|n|

∑
ad=n

(a,N)=1
d>0

d−1∑
j=0


f

(
az + j

d

)
if n > 0,

f

(
az + j

d

)
if n < 0.

(1.2)

This maps Sλ(Γ0(N)) → Sλ(Γ0(N)). Furthermore, these operators commute. Ex-

plicitly, for non-zero integers n and m, with (n,N) = (m,N) = 1, we have that

TnTm =
∑

d|(m,n)
d>0

Tmn
d2
.

In addition, the Hecke operators Tn with (n,N) = 1 commute with the Laplacian

and the reflection operator.

Another important use for Hecke operators, is for their relation to the Fourier

coefficients. More precisely, let f ∈ Sλ(Γ0(N)) be a eigenfunction of all Tn with

(n,N) = 1 and let λn be the eigenvalue for Hecke operator Tn, that is Tnf = λnf . We

call λn the nth Hecke eigenvalue. Furthermore, let am be the Fourier coefficients of

f and bm be the Fourier coefficients of Tnf . Then comparing the Fourier expansions

of (1.2), we get that

bm =
∑

d|(m,n)
d>0

amn
d2
.

Next, comparing the Fourier expansions of either side of Tnf = λnf , we see that

10

1.7. Oldforms and newforms

bm = λnam. Combining both of these, we get that

an = λna1

for all n ̸= 0.

Finally, we note the following important theorem.

Theorem 1.6.1. There exists an orthogonal basis {fj} in Sλ(Γ0(N)), where the fj’s

are eigenfunctions to all the Hecke operators Tn with (n,N) = 1.

1.7 Oldforms and newforms

Atkin–Lehner theory [AL70] for holomorphic forms allows us to distinguish between

forms that are new to the level and ones which can be derived from lower levels. This

theory directly translates to Maass forms, giving us a normalisation for the Fourier

coefficients and relations between these Fourier coefficients and Hecke operators.

Let K,N ∈ N and suppose K | N . Then Γ0(N) ⊆ Γ0(K). Notably, if f is a

Maass cusp form of Γ0(K), then f(kz) is a Maass cusp form of Γ0(N) for all k | N
K
.

Forms that arise like this for Γ0(N) we call oldforms. We define newforms to be

forms in the orthogonal complement (with respect to the Petersson inner product)

of the space spanned by the oldforms. We denote the space of Maass newforms of

level N and Laplace eigenvalue λ by Snew
λ (Γ0(N)). Since oldforms can be derived

from lower level newforms, we can just focus our attention on newforms to derive

facts about all cusp forms.

As a further refinement, we call a Maass newform f ∈ Snew
λ (Γ0(N)) a normalised

newform if f is an eigenfunction of all Hecke operators Tn with (n,N) = 1, and

furthermore, its first Fourier coefficient a1 = 1. The motivation for this refinement

is given in the following two theorems.

Theorem 1.7.1. There exists an orthogonal basis of normalised newforms for the

space Snew(Γ0(N)). We call this basis the Hecke-eigenbasis of this space.

Theorem 1.7.2. Let f ∈ Snew
λ (Γ0(N)) be a normalised newform with Laplace eigen-

value λ, Hecke eigenvalues λn, Fourier coefficients am, given by (1.1) and parity

ε = 1 if f is even and ε = −1 if f is odd. Then

am = λm, and

a−m = ελm

11

1.8. L-function

for all m ∈ N. Furthmore, we have the following Hecke multiplicativity relations

aman =
∑

d|(m,n)
d>0

amn
d2
, for (n,N) = 1,m ∈ Z,

amap = amp, for p | N,m ∈ Z.

Finally, for prime q | N but q2 ∤ N , we have that

aq =
wq√
q
,

where wq = ±1 is the eigenvalue of the Fricke involution.

For the entirety of this thesis, we shall mainly use normalised Maass newforms.

1.8 L-function

Let f be a normalised Maass newform, with Laplace eigenvalue λ = 1
4
+ r2, of level

N and trivial character. Moreover, let af (n) be the Hecke eigenvalues of f . We

define the associated L-function to f by

Lf (s) =
∞∑
n=1

af (n)

ns
,

where Re(s) > 1. This can be analytically continued to the whole complex plane

and satisfies the functional equation

Λf (s) = N
s
2ΓR(s+ a+ ir)ΓR(s+ a− ir)Lf (s) = ω(−1)aΛf (1− s),

where

• ΓR(s) = π−s/2Γ(s/2),

• ω is the eigenvalue of the Fricke involution given by f(z) = ωf
(
− 1

Nz

)
,

• a = 0 if f is even and a = 1 if f is odd.

It is conjectured, analogous to the Riemann zeta function, that L-functions as-

sociated to Maass cusp forms on Γ0(N) satisfy a Riemann hypothesis, that is all the

zeros of Lf (s) in the strip {s ∈ C | 0 < Re(s) < 1} lie on the line s = 1/2+ it, t ∈ R.
When computing zeros on the critical line of these L-functions, it is easier to work

12

1.9. Selberg Trace formula

with the associated real-valued Z-function, defined by

Z(t) = ε̄1/2
γ(1/2 + it)

|γ(1/2 + it)|
Lf (1/2 + it), (1.3)

where γ(s) = N
s
2ΓR(s + a + ir)ΓR(s + a − ir) and ε = ω(−1)a. Since |Z(t)| =

|Lf (1/2 + it)|, they share the same zeros on the critical line.

1.9 Selberg Trace formula

As stated in the introduction, Selberg [Sel56] introduced the Selberg trace formula

to prove the existence of Maass cusp forms in general. The Selberg trace formula

can be seen as a generalisation of the Poisson summation formula to non-compact

manifolds, where one side is a sum over the spectral eigenvalues, and the other

side, is a collection of terms relating to the geometry of the space. More concretely,

let {fj}∞j=1 be a sequence of normalised Hecke eigenforms such that it is a basis

for
⊕

λ>0 S
new
λ (N). Let λj denote the Laplace eigenvalue of fj and assume that

λ1 ≤ λ2 ≤ In addition, let aj(n) be the Hecke eigenvalues for fj. Then, the

Selberg trace formula is an expression for the weighted sum

∞∑
j=1

aj(n)h(rj),

where n ∈ Z\{0} and h is a suitable test function. We call this side the spectral

side, and the terms on the right-hand side of the equation the geometric side.

There are many different ways to write the geometric side, depending on what

one plans to use it for. In this thesis, it is crucial that we have a very explicit form

of the geometric side, so that it can be implemented on a computer easily. More

details of this are given in Sections 2.2 and 2.3 for level 1 and squarefree level N

respectively.

One very important consequence of the Selberg trace formula is an approximation

to the density of the eigenvalues, called the Weyl law, and is given by

#{λj | λj < M} ∼ vol(Γ0(N)\H)

4π
M, (1.4)

as M → ∞. For Γ0(N), we can write this explicitly using [Ris04] as

#{λj | λj < M} = N
∏
p|N

(
1 +

1

p

)M
12

+O(
√
M log

√
M).

13

1.10. Open conjectures

1.10 Open conjectures

During the 20th century and early 21st century, many open conjectures on holo-

morphic modular forms have been proven, most notably the Ramanujan conjecture.

Most of these results have direct analogues for Maass forms and are still open in

this case.

Selberg eigenvalue conjecture

A natural question to ask is how small can the Laplace eigenvalue be for Maass

forms? If we let f ∈ Sλ(Γ0(N)) be a Maass cusp form with Laplace eigenvalue λ,

then the Selberg eigenvalue conjecture states that λ ≥ 1
4
. We call a Maass form

exceptional if λ ∈ (0, 1
4
]. This was known for the full modular group by Selberg and

W. Roelcke independently in the 1950s, and can be proved using elementary methods

(see [Hej83, Chap. 11, Prop. 2.1]). For all levels N ≤ 880, this conjecture has been

numerically verified by Booker, Min and Strömbergsson [BLS20]. Theoretically, the

best bound we currently have is λ ≥ 975/4096 = 0.238037109375 due to Kim and

Sarnak [Kim03].

Ramanujan–Petersson conjecture

Let f ∈ Snew
λ (Γ0(N)) be a normalised newform with Laplace eigenvalue λ and Hecke

eigenvalues λn. Then, the Ramanujan–Petersson conjecture states that |λp| ≤ 2 for

all prime p ∤ N . We remark that the Ramanujan–Petersson conjecture for holo-

morphic modular forms was proven by Deligne [Del74]. For Maass forms however,

this is still open with the best bound being |λp| ≤ p7/64 + p−7/64 due to Kim and

Sarnak [Kim03]. From the Hecke relations it follows that for n ∈ N,

|λn| ≤ b(n) :=
∏
pk∥n

sinh((k + 1)θ log p)

sinh(θ log p)
, (1.5)

where θ = 7/64 and pk∥n means that pk | n but pk+1 ∤ n.

Sato–Tate conjecture

The Sato–Tate conjecture is a statistical conjecture about the asymptotic distribu-

tion of Hecke eigenvalues λp of Hecke operators Tp for primes p. It states that the λp

should be asymptotically distributed with respect to the Sato–Tate measure given

14

1.10. Open conjectures

by

µ∞ =
1

π

√
1− x2

4
dx,

as p→ ∞. This is also sometimes referred to as the horizontal Sato–Tate conjecture.

A related result, sometimes referred to as vertical Sato–Tate, proven by Sarnak

in [Sar87], states that instead if we fix a prime p ∤ N and let the level tend to

infinity or the Laplace eigenvalue tend to infinity, then the points λp of these forms

are asymptotically distributed by the measure

µp = fp µ∞,

where

fp(x) =
p+ 1

(p1/2 + p−1/2)2 − x2
,

for x ∈ [−2, 2].

15

Chapter 2

Trace formula algorithm for Maass

forms

In this chapter, we introduce a novel method to compute and rigorously verify the

Laplace and Hecke eigenvalues of Maass cusp forms of squarefree level and trivial

character. The main tool used is an explicit version of the Selberg trace formula

due to Strömbergsson [Str16].

The outline of this chapter is as follows. In Section 2.1 we present the novel

algorithm. In Sections 2.2 and 2.3 we state the explicit forms of the Selberg trace

formula that we use for level 1 and squarefree level N respectively, and explain

computational aspects on how to compute it. In Section 2.4 we choose and optimise

the test function for the trace formula such that it maximises the precision of the

computation. Finally, in Section 2.5 we state the computational results and show

some numerical evidence towards the Ramanujan–Petersson conjecture, Sato–Tate

conjecture and the Riemann hypothesis for L-functions of Maass cusp forms.

This chapter is heavily based on work by the author which first appeared in

[SH22].

2.1 Trace Formula Algorithm

In this section, we derive the algorithm to compute and rigorously verify the Laplace

and Hecke eigenvalues of Maass cusp forms of squarefree level N . The central tool

used here is the Selberg trace formula with Hecke operators. The main idea here is

to use linear algebra to remove the contribution of all the forms up to some limit

and isolate just one form. We then use our approximation to this form to see how

well it removes the remaining contribution.

2.1.1 Setup

Consider the space of Maass newforms of level N, Laplace eigenvalue λ and trivial

character, denoted by Snew
λ (Γ0(N)). Let {fj}∞j=1 be a sequence of normalised Hecke

eigenforms such that it is a basis for
⊕

λ>0 S
new
λ (Γ0(N)). Let λj denote the Laplace

16

2.1. Trace Formula Algorithm

eigenvalue of fj and assume that λ1 ≤ λ2 ≤ In addition, let aj(n) be the Hecke

eigenvalues for fj.

The Selberg trace formula allows us to compute

t(n,H) :=
∞∑
j=1

aj(n)H(λj),

for any non-zero n ∈ Z with (n,N) = 1 and any sufficiently nice test function H.

Using the Hecke relations, we compute that(
M∑

m=1

c(m)aj(m)

)2

=
M∑

m1=1

M∑
m2=1

c(m1)c(m2)
∑

d|(m1,m2)

aj

(m1m2

d2

)
,

for any sequence {c(m)}Mm=1 of real numbers, satisfying c(m) = 0 whenever (m,N) >

1. Thus, defining

Q(c,H) :=
∞∑
j=1

(
M∑

m=1

c(m)aj(m)

)2

H(λj),

we have

Q(c,H) =
M∑

m1=1

M∑
m2=1

c(m1)c(m2)
∑

d|(m1,m2)

t
(m1m2

d2
, H
)
. (2.1)

2.1.2 Computing the forms

Let H be a non-negative test function and let H̃(λ) = λH(λ). Let Q and Q̃ denote

the respective matrices of the quadratic forms Q(c,H) and Q(c, H̃). We can get

approximations of the Laplace eigenvalues by considering the generalised symmetric

eigenvalue equation

Q̃x = λQx. (2.2)

The eigenvalues of this problem correspond directly with the Laplace eigenvalues

in the trace formula. To see this, we see that solving (2.2) is equivalent to solving

the equation

det(Q̃− λQ) = 0.

17

2.1. Trace Formula Algorithm

Plugging in the matrix elements of Q̃ and Q, we see that the above becomes

det

 ∑
d|(m1,m2)

t
(m1m2

d2
, H̃
)
− λt

(m1m2

d2
, H
)

1≤m1,m2≤M


= det

 ∑
d|(m1,m2)

∞∑
j=1

aj

(m1m2

d2

)
H(λj)(λj − λ)


1≤m1,m2≤M

 = 0.

Here, we see that solutions λ of (2.2) correspond exactly to the Laplace eigenval-

ues of the Maass cusp forms. Now, these will only be non-rigorous approximations

since the tail of the spectrum will have an influence.

We solve this by first diagonalising Q = PDP T , where P is an orthogonal

matrix and D is diagonal with positive entries. Then the solutions to (2.2) will just

be the eigenvalues of D−1/2P T Q̃PD−1/2. For each eigenvalue λ̃i, we set ci to be the

corresponding eigenvector. We will use the components of ci to form the sequence

c(m) for each eigenvalue. The reason for this, is that the ci will pick out the ith

Maass form. More explicitly, plugging in ci into the following Rayeigh quotient gives

cTi Q̃ci
cTi Qci

= λ̃i.

2.1.3 Verifying the forms

Firstly, for the verification we shall prove that there exists a Laplace eigenvalue near

λ̃i. For this, we define the Rayleigh quotient

εi :=

√
Q(ci, H̃i)

Q(ci, H)
, (2.3)

where H̃i(λ) = H(λ)(λ−λ̃i)2, for the same ci computed above. Then ε2i is a weighted

average of (λ− λ̃i)2 and hence there exists a cuspidal eigenvalue λ ∈ [λ̃i−εi, λ̃i+εi].
Another way to see this, is that the ci is just picking out the ith Maass form and

we are seeing how well our approximation removes the contribution of this form in

the trace formula.

Next we prove completeness of the eigenvalues, i.e. prove that we have not

missed any. We choose a test function H∗(λ) that is positive and monotonically

decreasing for λ > 0. Then H∗(λ) ≥ H∗(λ̃i + εi) for all λ ∈ [λ̃i − εi, λ̃i + εi]. Hence

18

2.1. Trace Formula Algorithm

any eigenvalue λ that is not contained in
⋃

i[λ̃i − εi, λ̃i + εi] must satisfy

H∗(λ) ≤ t(1, H∗) +
∑
i

H∗(λ̃i + εi).

Here the second sum ranges over all i such that [λ̃i − εi, λ̃i + εi] does not overlap

the corresponding interval for any smaller value of i. Since H∗ is monotonic, this

determines numbers δi > 0 such that |λi − λ̃i| ≤ εi and |λj − λ̃i| ≥ δi for j ∈
N\{i}. Note that this approach only works well if the λi turn out to be distinct

and well separated. It is conjectured that the Laplacian spectrum is simple for

squarefree level and trivial character, with Poissonian spacing statistics. There exists

some theoretical and numerical evidence for this, namely from [LS94] and [Ste94]

respectively. For this algorithm, we will see from the data that this will be the case.

Finally, we consider the Hecke eigenvalues. For j ≥ 1 and any sequence {c(m)}Mm=1,

define

Lj(c) =
M∑

m=1

c(m)aj(m).

Let H, H̃i be as above. Then(∑
j ̸=i

Lj(ci)aj(n)H(λj)

)2

≤
∑
j ̸=i

Lj(ci)
2H(λj)

∞∑
j=1

(aj(n))
2H(λj)

≤ δ−2
i Q(ci, H̃i)Q(en, H) = ε2i δ

−2
i Q(ci, H)Q(en, H),

where en(m) = 1 if m = n and 0 otherwise. Thus, defining

ηi,n =
εi
δi

√
Q(ci, H)Q(en, H) and Wi = Li(ci)H(λi), (2.4)

we have

Ai(n) := ai(n)Wi =
M∑

m=1

ci(m)
∑

d|(m,n)

t
(mn
d2

, H
)
+ βi,nηi,n,

where βi,n is some real constant that depends on i and n and satisfies |βi,n| ≤ 1. We

can use this to compute ai(n), with (n,N) = 1, by using the fact that ai(1) = 1 to

compute Wi to a proven accuracy.

In practice, we will choose one test function H that is both positive and mono-

tonically decreasing and use this throughout.

19

2.1. Trace Formula Algorithm

2.1.4 Computing an for (n,N) > 1 for squarefree level N

Let f be a primitive Maass newform of squarefree level N , Laplace eigenvalue λ =

1/4+ r2 and trivial character, with Fourier coefficients an. By Atkin–Lehner theory,

see Section 1.7, for each prime p | N we have ap = ±1/
√
p. Moreover, defining

w = µ(N)
√
N
∏

p|N ap =
∏

p|N sign(−ap), we have f(z) = wf(−1/Nz). Hence, we

just need to find the signs of the ap for p | N , and then use the Hecke relations to

find all an for (n,N) > 1.

Suppose first that f is even, so its Fourier expansion is of the form

f(z) =
∞∑
n=1

an√
n
Wir(2πny) cos(2πnx),

where Wir(y) :=
√
yKir(y) and Kir(y) is the K-Bessel function. Substituting z = iy

into the relation f(z) = wf(−1/Nz), we have

∞∑
n=1

an√
n

(
Wir(2πny)− wWir

(
2πn

Ny

))
= 0. (2.5)

If w = −1 then taking y = 1/
√
N in (2.5) yields

∞∑
n=1

an√
n
Wir

(
2πn√
N

)
= 0.

If w = 1 then taking y =
√
2/N in (2.5) yields

∞∑
n=1

an√
n

(
Wir

(
2πn

√
2√

N

)
−Wir

(
πn

√
2√

N

))
= 0.

Now suppose f is odd, so its Fourier expansion takes the form

f(z) =
∞∑
n=1

an√
n
Wir(2πny) sin(2πnx).

In this case plugging in z = iy would only give the trivial relation 0 = 0, so instead

we first differentiate with respect to x. For this we consider

∂

∂x
(f(z)− wf(−1/Nz))|z=iy = 0.

20

2.1. Trace Formula Algorithm

After some computation this yields

∞∑
n=1

an
√
n

(
Wir(2πny) +

w

Ny2
Wir

(
2πn

Ny

))
= 0. (2.6)

If w = 1 then taking y = 1/
√
N in (2.6) yields

∞∑
n=1

an
√
nWir

(
2πn√
N

)
= 0.

If w = −1 then taking y =
√

2/N in (2.6) yields

∞∑
n=1

an
√
n

(
Wir

(
2πn

√
2√

N

)
− 1

2
Wir

(
πn

√
2√

N

))
= 0.

In summary, if we define

W (y) =



Wir(y) if f is even and w = −1,

Wir(y
√
2)−Wir(y/

√
2) if f is even and w = 1,

y
√
N

2π
Wir(y) if f is odd and w = 1,

y
√
N

2π

(
Wir(y

√
2)− 1

2
Wir(y/

√
2)

)
if f is odd and w = −1,

then

∞∑
n=1

an√
n
W

(
2πn√
N

)
= 0.

Now computationally we will only have accurate approximations of an for n ≤M ,

so we must truncate the above sums at M and estimate the error incurred. Using

the current best estimate towards to Ramanujan–Petersson conjecture from Kim–

Sarnak [Kim03], see (1.5), we get the following.

Lemma 2.1.1. Let f be a Maass cusp form of level N with Hecke eigenvalues am.

Then for all non-zero m ∈ Z we have∣∣∣∣ am√
m

∣∣∣∣ ≤ η := 1.758.

Proof. Using (1.5), we have
∣∣∣ am√

m

∣∣∣ ≤ b(m)√
m
, and this is maximised at m = 12.

21

2.1. Trace Formula Algorithm

Additionally we also have, from Appendix A, that

|Wir(y)| ≤
√
π

2
e−y for y > 0.

With both of these results we can easily find bounds for the tails of the sums and

obtain

∣∣∣∣∣
∞∑

n=M+1

an√
n
W

(
2πn√
N

)∣∣∣∣∣ ≤



η

√
π

2

exp
(
−2πM√

N

)
exp

(
2π√
N

)
− 1

f even, w = −1,

2η

√
π

2

exp
(
−πM

√
2√

N

)
exp

(
π
√
2√

N

)
− 1

f even, w = 1,

η

√
π

2

(
(M + 1) exp

(
2π√
N

)
−M

)
exp

(
2πM√

N

)(
exp

(
2π√
N

)
− 1
)2 f odd, w = 1,

3η

2

√
π

2

(
(M + 1) exp

(
π
√
2√

N

)
−M

)
exp

(
πM

√
2√

N

)(
exp

(
π
√
2√

N

)
− 1
)2 f odd, w = −1.

To obtain these bounds, we used the fact that

∞∑
n=M

ne−nx =
e(1−M)x ((1−M) +Mex)

(ex − 1)2
,

which can be seen by differentiating both sides of the geometric series

∞∑
n=M

e−nx =
e−Mx

1− e−x
.

To find the signs of the ap for p | N we just test every combination of ±1 for the

signs of the ap, then use this to compute w and the corresponding sum from the

above cases. Heuristically, we expect only one of these sums to be within the error

derived. When there is only one sum within the errors, we can say that the result is

rigorous. We then take the signs of the ap for p | N and w from that sum. In practice

we see this works well, provided the Laplace eigenvalue and Hecke eigenvalues are

computed to a high enough precision.

22

2.2. The Selberg Trace Formula for level 1

2.2 The Selberg Trace Formula for level 1

In the algorithm given in Section 2.1, an essential tool we need is an explicit ver-

sion of the Selberg trace formula with Hecke operators. Currently, this has only

been derived for squarefree level by Strömbergsson in [Str16]. To make this more

suitable for computation, we rewrite it in the following form, following the steps of

Proposition 2.1 in [BL17].

Theorem 2.2.1 (The Selberg trace formula for Maass newforms for level 1). Fix

δ > 0, let h(t) be a even analytic function on the strip {t ∈ C : Im(t) ≤ 1
2
+ δ}

such that h(r) ∈ R for r ∈ R and h(r) = O((1 + |r|2)−1−δ). Define g as the Fourier

transform of h given by

g(u) =
1

2π

∫ ∞

−∞
h(r)e−iru dr.

Let {fj} be a sequence of normalised Hecke eigenforms of level 1, with Laplacian

eigenvalues λj =
1
4
+ r2j and respective Hecke eigenvalues aj(n).

23

2.2. The Selberg Trace Formula for level 1

Then, we have

σ1(|n|)√
|n|

h

(
i

2

)
+
∑
j>0

h(rj)aj(n)

=
∑
t∈Z√

D=
√
t2−4n̸∈Q

L(1, ψD) ·


g

(
log

(
(|t|+

√
D)2

4|n|

))
if D > 0,√

|D/4n|
2π

∫ ∞

−∞

g(u) cosh(u/2)

sinh2(u/2) + |D/4n|
du if D < 0

+
∑
ad=n
a>0
a̸=d

(
log π + log |a− d| − log(X(|a− d|))

|a− d|

)
· g
(
log
∣∣∣a
d

∣∣∣)

+
1

2

∑
ad=n
a>0
a̸=d

∫ ∞

|log|ad ||
g(u) · eu/2 + εe−u/2

eu/2 − εe−u/2 +
∣∣∣√|a/d| − ε

√
|d/a|

∣∣∣ du
+
∑
ad=n
a>0

[
g
(
log
∣∣∣a
d

∣∣∣) log(4eγ) + ∫ ∞

0

g(u+ log
∣∣a
d

∣∣)− g(log |a
d
|)

2 sinh(u/2)
du− 1

4
h(0)

]

+ 2
∞∑

m=2

∑
ad=n
a>0

Λ(m)

m
g
(
log
∣∣∣a
d

∣∣∣− 2 logm
)
,

+



− 1

12
√
n

∫ ∞

−∞

g′(u)

sinh
(
u
2

) du+ (log(π√n
2

)
+ γ

)
g(0)

−
∫ ∞

0

log
(
2 sinh

(u
2

))
g′(u) du if

√
n ∈ Z,

0 otherwise,

where

L(1, ψD) =
L(1, ψd)

l

∏
p|l

[
1 + (p− ψd(p))

(l, p∞)− 1

p− 1

]
,

with D = dl2, l > 0, d a fundamental discriminant and ψd(p) =
(

d
p

)
. Here (l, p∞)

denotes the largest power of p that divides l. Additionally σ1(n) =
∑

d|n d is the

divisor function, Λ(m) is the von Mangoldt function, ε = sign(n) and X(m) =∏
k mod m gcd(k,m).

Remark 2.2.1. We refer to the terms in the sum with D > 0 as the hyperbolic terms

and the terms D < 0 as the elliptic terms.

24

2.2. The Selberg Trace Formula for level 1

2.2.1 Computational remarks

The main numerical bottleneck of computing the trace formula is from the con-

tribution of the hyperbolic terms, which involves computing the class number and

regulator of Q(
√
D). For numerical stability, it is best to consider a test function g

that is compactly supported. This allows one to compute the terms on the geomet-

ric side to arbitrary precision with a fixed finite list of class numbers. Precisely we

would need class numbers hQ(
√
D) for D = t2 − 4n < (2n cosh(X/2))2.

We can also get a bonus increase in the precision of the algorithm by splitting the

spectrum between even and odd forms separately. For this, we recall that for even

forms, the Hecke eigenvalues satisfy a(n) = a(−n), and odd forms they satisfy a(n) =

−a(−n). Hence, the traces given by 1
2
(t(n, h) + t(−n, h)) and 1

2
(t(n, h)− t(−n, h))

will pick out the even and odd forms respectively. This effectively allows us to

consider double the amount of forms for a fixed parity.

Computing the integrals appearing in the elliptic terms to arbitrary precision

can also be challenging given the large number of them appearing for values of D

and n. We can remedy this by noting that |D/4n| ∈ (0, 1] for D = t2 − 4n < 0, and

considering the integrals as functions f : (0, 1] → R defined by

f(x) =

∫ ∞

0

g(u) cosh(u/2)

sinh2(u/2) + x
du.

This function is analytic with respect to the variable x, hence we can approximate

this integral with a Taylor series, where the only integrals we need to compute are

given in the Taylor coefficients. Explicitly, for x near x0, we can approximate f(x)

by

f(x) =
K∑
k=0

f (k)(x0)

k!
(x− x0)

k +RK(x),

where RK(x) is the error term given by

RK(x) =
f (K+1)(ξ)

(K + 1)!
(x− x0)

K+1,

for some ξ in the closed interval between x and x0. To find the Taylor coefficients,

we use Leibniz’s integral rule to get

dk

dxk
f(x) = k!(−1)k

∫ ∞

0

g(u) cosh(u/2)

(sinh2(u/2) + x)k+1
du.

25

2.2. The Selberg Trace Formula for level 1

To bound the error term, let ξ ∈ [x0, x] and Mg = maxy∈[0,∞) |g(y)|. Then

|f (K+1)(ξ)| = (K + 1)!

∣∣∣∣∫ ∞

0

g(u) cosh(u/2)

(sinh2(u/2) + ξ)K+2
du

∣∣∣∣
≤Mg(K + 1)!

∫ ∞

0

cosh(u/2)

(sinh2(u/2) + ξ)K+2
du.

Here we have that∫ ∞

0

cosh(u/2)

(sinh2(u/2) + ξ)K+2
du = πξ−3/2−K

K+1∏
k=1

(
2k − 1

2k

)
.

Hence we can bound the error term in the Taylor series by

|RK(x)| ≤
πMg√
x0

∣∣∣∣1− x

x0

∣∣∣∣K+1 K+1∏
k=1

(
2k − 1

2k

)
.

To compute all the elliptic integrals, we shall need to choose the sample points for

our Taylor series, such that it minimises the number of Taylor coefficients that are

needed to be computed. Since there is a singularity at x = 0, it is best for us to

choose our sampling points geometrically, that is xj = c−j for some c > 1. Suppose,

we take K terms of a Taylor expansion around the point xj, we can see that error

is of size about |1− x/x0|K . For our sample points, we have∣∣∣∣1− x

x0

∣∣∣∣ ≤ (c− 1

c+ 1

)
,

hence the worst our error could be is
(
c−1
c+1

)K
. Note, that given x we can choose

j = ⌈logc(2
(c+1)x

)⌉. Thus to choose the number of sampling points needed, we just

consider the smallest value of x that we could feasibly have.

We see that the number of sample points is about logc n, where n is the largest

Hecke operator we shall need to consider. So in total we have to compute about

K logc n integrals, and we want to minimise this with respect to the constraint that(
c−1
c+1

)K
< ε for some fixed error tolerance ε. This surprisingly has the exact solution

with c = 1 +
√
2 and K = logc(1/ε).

In addition to this, the other integrals in the trace formula also need be taken with

some care when implementing in interval arithmetic, mainly due to their removable

singularities. The main integrals where this is a problem are the following from the

sum over the divisors of n,

26

2.3. The Selberg Trace Formula for squarefree level N > 1

∫ ∞

0

g(u+ log
∣∣a
d

∣∣)− g(log |a
d
|)

2 sinh(u/2)
du.

Near u = 0, we essentially get 0/0, which interval arithmetic can struggle to

manage. To circumvent this, we can factor out a u from the numerator, and rewrite

the denominator in terms of the sinc(x) = sin(x)/x function. This does rely on

there being a “nice” expression for the numerator divided by u. We do not give

details here how one would go about doing this, however if one were to look at the

test function in Section 2.4, we see that it is essentially a sum of polynomials in u,

so it should not be too difficult to derive such an expression. The method we used

to implement numerical integration in interval arithmetic is given in Appendix B.

2.3 The Selberg Trace Formula for squarefree level

N > 1

Similar to the level 1 case, we use the trace formula derived by Strömbergsson

in [Str16], and rewrite it in the following form, following Proposition 2.2 in [BL17].

Theorem 2.3.1 (The Selberg trace formula for Maass newforms for squarefree level

and trivial character). Fix δ > 0, let h(t) be a even analytic function on the strip

{t ∈ C : Im(t) ≤ 1
2
+ δ} such that h(r) ∈ R for r ∈ R and h(r) = O((1 + |r|2)−1−δ).

Define g as the Fourier transform of h given by

g(u) =
1

2π

∫ ∞

−∞
h(r)e−iru dr.

Let {fj} be a sequence of normalised Hecke eigenforms of squarefree level N ,

with Laplacian eigenvalues λj =
1
4
+ r2j and respective Hecke eigenvalues aj(n).

27

2.4. Choice of test function

Then, for (N, n) = 1 we have

µ(N)σ1(|n|)√
|n|

h

(
i

2

)
+
∑
j>0

h(rj)aj(n)

=
∑
t∈Z√

D=
√
t2−4n̸∈Q

cN(D) ·


g

(
log

(
(|t|+

√
D)2

4|n|

))
if D > 0,√

|D/4n|
2π

∫ ∞

−∞

g(u) cosh(u/2)

sinh2(u/2) + |D/4n|
du if D < 0

+ Λ(N)
∑
ad=n
a>0
a̸=d

g
(
log
∣∣a
d

∣∣)
(N∞, |a− d|)

− 2Λ(N)
∑
ad=n
a>0

∞∑
r=0

N−rg
(
log
∣∣∣a
d

∣∣∣− 2r log(N)
)

+

−
∏

p|N(p− 1)

12
√
n

∫ ∞

−∞

g′(u)

sinh
(
u
2

) du if
√
n ∈ Z,

0 otherwise,

where

cN(D) = L(1, ψD)
∏
p|N

(ψd(p)− 1)

=
L(1, ψd)

l

∏
p|N

(ψd(p)− 1)
∏
p|l

[
1 + (p− ψd(p))

(l, p∞)− 1

p− 1

]
,

with D = dl2, l > 0, d a fundamental discriminant and ψd(p) =
(

d
p

)
. Here (l, p∞)

denotes the largest power of p that divides l. Additionally σ1(n) =
∑

d|n d is the

divisor function, µ(n) is the Möbius function and Λ(m) is the von Mangoldt function.

Remark 2.3.1. We refer to the terms in the sum with D > 0 as the hyperbolic terms

and the terms D < 0 as the elliptic terms. The terms that are multiplied by the von

Mangoldt function Λ(N) we call the parabolic terms, and the term when
√
n ∈ Z

we call the identity term.

The computational remarks from Section 2.2.1 about computing the hyperbolic

and elliptic terms are also relevant here.

2.4 Choice of test function

As stated in the previous sections, we will want a test function that is even, positive

and monotonically decreasing. Moreover, to aid in computations, we will also want

28

2.4. Choice of test function

g, the Fourier transform of h, to be compactly supported. This will make all the

integrals and sums on the geometric side have finite bounds which will help when

implementing the algorithm.

2.4.1 Candidate test function

A good initial function to consider is powers of the sinc(x) = sin(x)/x function. For

even powers, this is a positive even function with a compactly supported Fourier

transform. However, this function is not monotonically decreasing. To remedy this

we consider the test function

h1(t) =
π2

π2 + 4

[
sinc2

(
t

2

)
+

1

2
sinc2

(
t− π

2

)
+

1

2
sinc2

(
t+ π

2

)]
,

and let hd(t) = h1(t)
d for d ∈ N. We can see that this is decreasing and positive

by noting that sin2(t/2) + 1/2(sin2(t/2 + π/2) + sin2(t/2 − π/2)) = 1, that is, the

waves constructively amplify the signal everywhere. Then hd(t) is a positive, even

and monotonically decreasing function on R>0, satisfying hd(0) = 1 and

hd(t) ∼
(

4π2

π2 + 4

)d

t−2d,

as |t| → ∞. Moreover, its Fourier transform

gd(x) =
1

π

∫ ∞

0

hd(t) cos(tx) dt, (2.7)

is compactly supported on [−d, d]. For a fixed d we can express gd in the form

gd(x) =
∑

m∈{−1,0,1}

Am(x)e
πimx,

where

Am(x) = Am,j

(
x− j − 1

2

)
for x ∈ [j, j + 1), j ∈ {−d, . . . , d− 1},

for some Am,j ∈ C[x] satisfying Am,−1−j(x) = A−m,j(−x) = Am,j(−x). Note that all
the Am,j are determined by those with m ∈ {0, 1} and j ∈ {0, . . . , d− 1}.

Specifically, for d = 1, we have

A0,0(x) =
π2

π2 + 4

(
1

2
− x

)
and A1,0(x) =

1

2
A0,0(x).

29

2.4. Choice of test function

For d > 1, we compute the functions using convolutions. More explicitly, suppose

we are given functions

A(x) =
∑

m∈{−1,0,1}

Am(x)e
πimx and B(x) =

∑
m∈{−1,0,1}

Bm(x)e
πimx,

and we wish to compute their convolution C = A ∗ B, which is again a function of

the same form. For a set S, we define the indicator function 1S(x) = 1 if x ∈ S and

0 if x ̸∈ S. It suffices to consider the constituent functions

Am,j

(
x− j − 1

2

)
eπimx1[j,j+1)(x) and Bn,k

(
x− k − 1

2

)
eπinx1[k,k+1)(x),

with convolution∫
R
Am,j

(
y − j − 1

2

)
eπimy1[j,j+1)(y)Bn,k

(
x− y − k − 1

2

)
eπin(x−y)1[k,k+1)(x− y) dy.

Consider x ∈ [j+k+δ, j+k+δ+1) for some δ ∈ {0, 1}, and let t = x−
(
j + k + δ + 1

2

)
.

We make the change of variable y 7→ y + j + 1
2
to get∫

R
Am,j(y)e

πim(y+j+ 1
2)1[− 1

2
, 1
2)
(y)Bn,k

(
t+ δ − 1

2
− y

)
eπin(x−y−j− 1

2)1(t+δ−1,t+δ](y) dy

= eπi(m−n)(j+ 1
2)+πinx(−1)δ

∫ t

δ− 1
2

Am,j(y)Bn,k

(
t+ δ − 1

2
− y

)
eπi(m−n)y dy. (2.8)

When m ̸= n we apply repeated integration by parts to see that (2.8) becomes

eπi(m−n)(j+ 1
2)+πinx(−1)δ

degAm,j∑
r=0

degBn,k∑
s=0

(−1)s
(
r+s
s

)
(−πi(m− n))r+s+1

·
(
A

(r)
m,j

(
δ − 1

2

)
B

(s)
n,k(t)e

πi(m−n)(δ− 1
2) − A

(r)
m,j(t)B

(s)
n,k

(
δ − 1

2

)
eπi(m−n)t

)
= (−1)(m−n+1)δ

degAm,j∑
r=0

degBn,k∑
s=0

(−1)s
(
r+s
s

)
(−πi(m− n))r+s+1

·
(
A

(r)
m,j

(
δ − 1

2

)
B

(s)
n,k(t)(−1)(m−n)jeπinx − A

(r)
m,j(t)B

(s)
n,k

(
δ − 1

2

)
(−1)(m−n)keπimx

)
.

Note that this will contribute to both the Cm,j+k+δ and Cn,j+k+δ terms.

When m = n, we define polynomials Pδ,l ∈ C[y] such that Pδ,0 = Am,j(y) and

Pδ,l =

∫ y

δ− 1
2

Pδ,l−1(u) du,

30

2.4. Choice of test function

for l ≥ 1. Then applying integration by parts, (2.8) becomes

(−1)δ
degBn,k+1∑

l=1

B
(l−1)
n,k

(
δ − 1

2

)
Pδ,l(t)e

πimx.

Dilations

As will be explained later, we will optimise some of the values that comes from

defining the test function such as the support and power d. Part of this is to

consider the test function h(t) = hd(at) for some a ∈ R. Thus, by (2.7), we have

that its Fourier transform is of the form

g(u) =
1

a
gd

(u
a

)
.

If gd is supported on [−d, d], then g is supported on [−ad, ad]. Thus, we get the

more general form of g being

g(x) =
∑

m∈{−1,0,1}

Bm(x)e
πimx/a,

where Bm(x) = Am

(
x
a

)
.

Derivatives

In the verification of Maass forms in Section 2.1, we needed to consider test functions

of the form h̃(λ) = λnh(λ) for some n ∈ N. In the world of Fourier analysis, this

just amounts to the derivative of the Fourier transform. More explicitly, by (2.7),

we have for n > 0

dngd(x)

dxn
=


(−1)(n+1)/2

π

∫ ∞

0

tnhd(t) sin(tx) dt if n is odd,

(−1)n/2

π

∫ ∞

0

tnhd(t) cos(tx) dt if n is even.

Since we will still want the Fourier transform of λnh(λ) to be even, we will only be

considering even n. Explicitly to compute the derivative of (2.7), we have

dgd(x)

dx
=

∑
m∈{−1,0,1}

(A′
m(x) + πimAm(x)) e

πimx,

31

2.4. Choice of test function

which is again in the form ∑
m∈{−1,0,1}

Cm(x)e
πimx

for polynomials Cm(x) = A′
m(x)+πimAm(x). To compute higher degree derivatives

we then use dng
dxn = dn−1

dxn−1
dg
dx
. We note that we shall also be taking derivatives of a

dilated test function. In this case, we apply the same idea as above, noting that we

are replacing x with x/a.

2.4.2 Optimising the test function

We wish to optimise the decay of the test function for certain given constants such

that we maximise the precision with which we compute the trace formula. Suppose

we aim for a final precision of B bits. Due to the square roots in (2.3) and (2.4), we

must consider terms larger than 2−2B to be significant, and use a working precision

of at least 2B bits. Let X ∈ R>0, d ∈ N and consider the test function

h(r) = hd

(
Xr

d

)
. (2.9)

From this we see that g, the Fourier transform of h, is compactly supported on

[−X,X]. We take the edge of the precision window to be the point Rmax at which

h(Rmax) = h1(XRmax/d)
d = 2−2B. (2.10)

Fix a level N . Let M be the number of level N newforms with trivial character,

fixed parity and Laplace eigenvalue λ ≤ 1
4
+ R2

max and let Dmax be the largest size

of discriminant appearing in the hyperbolic sum. The value M will control the size

of the matrices appearing in the linear algebra and Dmax will control how many

hyperbolic terms will appear. We want the ability to choose these values since these

are the main sections of the algorithm that are constrained by external factors. For

example, we will only have a list of class numbers up to a certain limit that that

could feasibly be computed. The idea of this section is to first fix N,M and Dmax,

then find Rmax, X and d such that it maximises the precision B.

So fix N,M and Dmax. To find Rmax, we have from [Ris04] that

M =
R2

max

24
N +O(

√
λ log λ),

32

2.5. Computational results

which we can rearrange to compute Rmax by

Rmax ≈
√

24M

N
.

To find X, we use the fact that g is compactly supported on [−X,X] and hence, we

have that

Dmax =

(
2M cosh

(
X

2

))2

,

which we can rearrange to compute X by

X = 2 cosh−1

(√
Dmax

2M

)
.

Once we have values for Rmax and X, we can find d by first rearranging (2.10) to

obtain

− log2

(
h1

(
XRmax

d

))
d = 2B.

We can now find a d which maximises the left side of this equation, which in turn will

maximise our final precision B. Note that since d ∈ N, we can find the maximum

by sampling the left side of the equation over integer values of d and choosing the

largest value.

Thus, once we have computed these values, the test function we use for the

computation is given by (2.9). In practice, when choosing the level N , we pick N to

be the largest level we are computing with and use this test function for all smaller

levels as well.

2.5 Computational results

2.5.1 Computing the forms

We implemented this algorithm in the C programming language, predominately us-

ing the ball-arithmetic library Arb [Joh17] throughout our computations to manage

round-off errors. For the main computation, following the notation from Section

2.4.2, we chose the numbers Dmax = 109,M = 2000 and the maximum level we

consider is N = 105. Using SageMath [The20], we find X ≈ 5.51341, Rmax ≈
21.38089, d = 13 and 2B ≈ 63. We we used Pari [The22] to compute the real class

numbers and regulators required, and verified the calculations with the algorithm

33

2.5. Computational results

from Chapter 3.

With these numbers, we computed a total of 33214 Laplace eigenvalues of Maass

cusp forms, each with all Hecke eigenvalues an with n ≤ 2000 and (n,N) = 1, for

squarefree levels 2 ≤ N ≤ 105. The range of the εi’s computed is between 10−15

and 10−2. Of these forms 17243 are even and 15971 are odd.

Of these Laplace eigenvalues, we proved completeness for 16207 of them and

hence, their Hecke eigenvalues have rigorous error bounds. We could only compute

completeness for all prime levels 2 ≤ N ≤ 67 and all composite squarefree levels

6 ≤ N ≤ 105 due to the precision of the computed trace formula values in the linear

algebra. Each of these complete Laplace eigenvalues will correspond to a provably

unique Maass cusp form. Of these forms 8419 are even and 7788 are odd.

We observed that the closest distance between two Maass forms in the com-

pleted range was approximately 3 × 10−6 from the level 23 Laplace eigenvalues of

10.85166055 . . . and 10.8516021 The closest distance between two even forms

was approximately 1.4× 10−5 from the level 53 Laplace eigenvalues of 5.876312 . . .

and 5.876299 The closest distance between two odd forms was approximately

3× 10−6 from the level 55 Laplace eigenvalues of 8.350572 . . . and 8.350569

The entire computation took just under two weeks of time on 64 cores of 2.5GHz

AMD Opteron processors. As predicted, the computation was dominated by com-

puting the hyperbolic terms. We now provide some statistical evidence towards

various conjectures described in Section 1.10.

2.5.2 Ramanujan–Petersson conjecture

We recall, the Ramanujan–Petersson conjecture states that for prime p, the pth

Fourier coefficient ap for a Maass cusp form on Γ0(N) should satisfy |ap| ≤ 2. For

the data we computed, we verified this was true for all Hecke eigenvalues with

p ≤ 2000 for 13271 of our Maass forms that we proved completeness for.

2.5.3 Sato–Tate conjecture

The Sato–Tate conjecture states that the ap should be asymptotically distributed

with respect to the Sato–Tate measure given by

µ∞ =
1

π

√
1− x2

4
dx,

as p → ∞. A related result, proven by Sarnak in [Sar87], states that instead if we

fix a prime p ∤ N and let the level tend to infinity or the Laplace eigenvalue tend

34

2.5. Computational results

Figure 2.1: Comparison of our data to the predicted Sato–Tate measure. The data
is all ap from our 33214 Maass forms with 2 ≤ p ≤ 2000 and p not dividing the
respective levels of these forms. The histogram has 10003411 data points in 3162
bins.

to infinity, then the points ap of these forms are asymptotically distributed by the

measure

µp = fp µ∞,

where

fp(x) =
p+ 1

(p1/2 + p−1/2)2 − x2
,

for x ∈ [−2, 2]. As an example, for p = 2, the points should be distributed asymp-

totically with respect to

µ2 =
3
√
4− x2

9− 2x2
dx

π
. (2.11)

We used the Maass form data to create Figures 2.1 and 2.2, which illustrates a

strong connection to the predicted result of the Sato–Tate conjecture and the result

proven by Sarnak.

35

2.5. Computational results

p = 2

23806 data points in 154 bins.

p = 3

23916 data points in 154 bins.

p = 5

26039 data points in 161 bins.

p = 7

27623 data points in 166 bins.

p = 11

29528 data points in 171 bins.

p = 13

29021 data points in 170 bins.

p = 17

29788 data points in 172 bins.

p = 19

30123 data points in 173 bins.

Figure 2.2: Comparison of our data to Sarnak’s theorem [Sar87] for ap with prime
2 ≤ p ≤ 19.

36

2.5. Computational results

2.5.4 L-function and the Riemann hypothesis

Let f be a Maass cusp form, with Laplace eigenvalue λ = 1
4
+ r2, of level N and

trivial character. Moreover, let af (n) be the Hecke eigenvalues of f . We define the

associated L-function to f by

Lf (s) =
∞∑
n=1

af (n)

ns
,

where Re(s) > 1.

It is conjectured, analogous to the Riemann zeta function, that L-functions as-

sociated to Maass cusp forms on Γ0(N) satisfy a Riemann hypothesis, that is all the

zeros of Lf (s) in the strip {s ∈ C | 0 < Re(s) < 1} lie on the line s = 1/2+ it, t ∈ R.
For computations, it is easier to work with the associated real-valued Z-function,

defined by (1.3), since they share the same zeros on the critical line. An example of

a Z-function is shown in Figure 2.3.

For the Maass forms we computed we used Rubenstein’s library lcalc [Rub]

to compute the L-function and calculate the zeros in the strip. We did this for all

complete forms with εi ≤ 10−10 and found no zeros off the line, up to height t = 100.

To do this we computed the af (n) with (n,N) > 1 up to n ≤ 2000 using the method

in Section 2.1.4. The method employed in lcalc to find zeros on the critical line is

heuristic, however computing zeros on the critical line could be made rigorous with

more work using the method in [BT18].

37

2.5. Computational results

Figure 2.3: Plot of the Z-function on the critical line associated to the first level
105 Maass cusp form with Laplace eigenvalue r = 0.4366582

38

Chapter 3

Unconditional computation of real

quadratic class numbers

Class groups are fundamental objects in number theory and have been studied in

various forms for several centuries. Over the years several authors, including Gauss,

have produced tables of the various invariants of the class group of quadratic fields,

most notably the class number. With his computations, Gauss stated his famous

conjecture that there are infinitely many real quadratic fields with class number one.

A further use of computations of class groups is in the statement of the Cohen–

Lenstra heuristics [CL84], which were inspired by numerical data.

When using this numerical data to aid in giving evidence towards conjectures,

it would be ideal that these objects were computed unconditionally. Unfortunately,

the current fastest algorithms for computing class numbers rely on the generalised

Riemann hypothesis (GRH).

The current best algorithm for computing class numbers, due to Hafner and

McCurley [HM89], computes real quadratic class numbers in an expected subexpo-

nential runtime of O(exp((log d)1/2+ε)), where d is the discriminant of the quadratic

number field Q(
√
d). Unfortunately, this algorithm relies on GRH and also the run-

time analysis is heuristic. Later, Buchmann [BV07] generalised their work to all

number fields and gave a deterministic algorithm for quadratic fields, still reliant

on GRH, that runs in time O(d1/4+ε). Booker [Boo06] used Buchmann’s algorithm

to derive a verification algorithm that unconditionally terminates and, under GRH,

runs in O(d1/4+ε). An alternative algorithm given by Lenstra [Len82], based on

Shanks’ method of “baby step-giant step”, has runtime of O(d1/5+ε). This is also

completely dependent on GRH to provably give correct answers in this runtime.

For imaginary quadratic fields, Jacobson, Ramachandran and Williams [JRW06]

resolved the issue of conditional computation by deriving a batch verification algo-

rithm to verify the entire table of class groups. The main tool used was an explicit

version of the Eichler–Selberg trace formula for holomorphic modular forms. In this

chapter, we follow the same approach for real quadratic fields, however we use an

explicit version of the Selberg trace formula for Maass forms as the basis for a novel

algorithm to verify a list of class numbers.

39

3.1. Verification algorithm

The main difference between using Maass forms and holomorphic modular forms

is that the trace formula for holomorphic forms isolates a fixed weight, resulting

in a finite-dimensional space. In fact, the approach in [JRW06] used a space of

dimension 0, so no modular form computations were needed in order to compute

traces. By contrast, the trace formula for Maass forms necessarily involves infinitely

many forms. In practice this means that we need to truncate certain infinite sums

and estimate the error, and we require explicit, rigorous numerical computations of

Maass forms.

This chapter is heavily based on work by Ce Bian, Andrew R. Booker, Austin

Docherty, Michael J. Jacobson and the author [BBD+23], soon to appear. Additional

details on how to compute the class groups and further analysis regarding testing

various conjectures can also be found in the paper.

3.1 Verification algorithm

Let {fj}∞j=1 be a Hecke-eigenbasis for Maass forms of the full modular group PSL(2,Z),
with Laplace eigenvalues λj =

1
4
+ r2j and Hecke eigenvalues aj(n). The rj may be

taken to be positive real numbers, and we may assume that the fj are ordered such

that r1 ≤ r2 ≤ r3 ≤ Additionally, the fj have a Fourier expansion of the form

fj(x+ iy) =
∞∑
n=1

aj(n)√
n
W̃irj(2πny) cos

(ωj)(2πnx),

where W̃ir(x) = e
π
2
rWir(x) =

√
xe

π
2
rKir(x) and Kir(x) is the K-Bessel function. In

addition, we define cos(ω) = cos if ω = 0 and cos(ω) = sin if ω = 1. We remark

that the normalising factor e
π
2
r is non-standard; it is designed to compensate for

the exponential decay of the K-Bessel function as r → ∞ and is convenient for

numerical purposes.

3.1.1 The Selberg trace formula

The Selberg trace formula is an expression for the weighted sum

∞∑
j=1

aj(n)h(rj),

where n ∈ Z\{0} and h is a suitable test function (see Proposition 3.1.1 for more

details). For us the key interest in this formula is that it involves the values L(1, χ)

40

3.1. Verification algorithm

for quadratic Dirichlet characters χ, which are in turn related to quadratic class

groups via Dirichlet’s class number formula.

To state the formula precisely, we recall some notation from Section 1.1 in [BL17].

Let D denote the set of discriminants, that is

D = {D ∈ Z : D ≡ 0 or 1 (mod 4)}.

Any non-zero D ∈ D can be uniquely expressed in the form dℓ2, where d is a

fundamental discriminant and ℓ > 0. We define

ψD(n) =

(
d

n/ gcd(n, ℓ)

)
,

where (−) denotes the Kronecker symbol. We see that ψD is periodic modulo D,

and if D is a fundamental discriminant, then ψD is the usual quadratic character

modulo D. We set

L(s, ψD) =
∞∑
n=1

ψD(n)

ns
for Re(s) > 1.

When we set D = dℓ2, we can rewrite this as

L(s, ψD) = L(s, ψd)
∏
p|ℓ

1 + (1− ψd(p))

ordp(ℓ)∑
j=1

p−js

 .
Here we see that L(s, ψD) has analytic continuation to C, apart from a simple pole

at s = 1 when D is square. When D is not a square, we have

L(1, ψD) =
L(1, ψd)

ℓ

∏
p|ℓ

[
1 + (1− ψd(p))

(ℓ, p∞)− 1

p− 1

]
.

Here (l, p∞) denotes the largest power of p that divides l. We can now state the

Selberg trace formula for the modular group using results from [BL17].

Proposition 3.1.1 (The Selberg trace formula for the modular group). Let n be a

non-zero integer and f ∈ C3(R) be even of compact support. Define

h(r) = 2|n|−ir

∫ ∞

0

f
(
v − n

v

)
v2ir

dv

v
for r ∈ R,

41

3.1. Verification algorithm

and for a ∈ N with a | n define

Φ(a) = 2
∞∑

m=1

Λ(m)

m
f
(
am− n

am

)
+ 2a

∫ ∞

a

f(v − n
v
)− f(a− n

a
)

v2 − a2
dv

+
(
γ + log(4π)

)
f
(
a− n

a

)
− 1

2

∫ ∞

0

f
(
v − n

v

) dv

v

− a−1

∫
R
f
(√

y2 −min(4n, 0)
)
dy

+



∑
m∈N

m|(a−n
a
)

Λ(m)
(
1−m−1

)
f
(
a− n

a

)
+

∫ ∞

|a−n
a |

f(y)

y +
∣∣a− n

a

∣∣ dy if a ̸= n

a
,

(γ − log 2)f(0) +
1

2

∫ ∞

0

f(y) + f(y−1)− f(0)

y
dy

+
1

3

∫ ∞

0

f(0)− f(y)

y2
dy

if a =
n

a
,

where γ is the Euler–Mascheroni constant and Λ(m) is the von Mangoldt function.

Then,

∞∑
j=1

aj(n)h(rj) =
∑
a∈N
a|n

Φ(a) +
∑
t∈Z√

D=
√
t2−4n̸∈Q

L(1, ψD) ·


f
(√

D
)

if D > 0,√
|D|
π

∫
R

f(y)

y2 + |D|
dy if D < 0.

Proof. Suppose first that f is smooth. In [BL17, Proposition 2.1]1 we find the

following trace formula:

∞∑
j=0

aj(n)h(rj) =
∑
a∈N
a|n

F (a) +
∑
t∈Z√

D=
√
t2−4n̸∈Z

W (D), (3.1)

1There is a minor error in [BL17, Proposition 2.1]; the definition of W (0) should be divided by
2.

42

3.1. Verification algorithm

where

W (D) =



L(1, ψD)f
(√

D
)

if 0 <
√
D /∈ Z,

L(1, ψD)

√
|D|
π

∫
R

f(y)

y2 + |D|
dy if D < 0,∑

m|
√
D

Λ(m)(1−m−1)f(
√
D) +

∫ ∞

√
D

f(y) dy

y +
√
D

if 0 <
√
D ∈ Z,

1

2
(γ − log 2)f(0) +

1

6

∫ ∞

0

f(0)− f(y)

y2
dy

+
1

4

∫ ∞

0

f(y) + f(y−1)− f(0)

y
dy if D = 0,

and

F (a) = 2
∞∑

m=1

Λ(m)

m
f
(
am− n

am

)
+ 2a

∫ ∞

a

f
(
v − n

v

)
− f

(
a− n

a

)
v2 − a2

dv

+
(
γ + log(4π)

)
f
(
a− n

a

)
− 1

4
h(0).

To begin, we note that

h(0) = 2

∫ ∞

0

f
(
v − n

v

) dv

v
.

Thus, we see that Φ(a) and F (a) only differ by the final line of Φ(a) and the term

−a−1
∫
R f
(√

y2 −min(4n, 0)
)
dy. The latter term comes from the j = 0 term on

the left-hand side of (3.1), which corresponds to the constant eigenfunction with

r = i
2
and Hecke eigenvalues σ−1(|n|)

√
|n|. Averaging the integral formulas for

h(i/2) = h(−i/2) and making the substitution v 7→ y+
√

y2+4|n|
2

, we have

σ−1(|n|)
√

|n|h
(
i

2

)
=
∑
a∈N
a|n

a−1

∫ ∞

0

f
(
v − n

v

) (
1 + |n|v−2

)
dv

=
∑
a∈N
a|n

a−1

∫
R
f
(√

y2 −min(4n, 0)
)
dy,

as required.

43

3.1. Verification algorithm

As for the final line of Φ(a), we define the map{
t ∈ Z :

√
t2 − 4n ∈ Z

}
→ {a ∈ N : a | n} ,

t 7→ a =

∣∣∣∣t+√
t2 − 4n

2

∣∣∣∣ .
Then for t ∈ Z with

√
t2 − 4n ∈ Z, we have that a is a positive divisor of n with

t2 − 4n = (a − n/a)2. Furthermore, this map is a bijection unless n is a square,

in which case the value a =
√
n is assumed twice (from t = ±2

√
n). Hence the

corresponding terms on the right-hand side of (3.1) contribute as the final line of

F (a). Note that the contribution from a = n/a is doubled.

Finally, we remove the assumption from [BL17, Proposition 2.1] that the test

function is smooth. Under our hypotheses on f , we can apply integration by parts

three times to the definition of h to see that h(r) ≪ |r|−3. By the Weyl estimate

#
{
j : rj ≤ r

}
≪ r2, it follows that the left-hand side of (3.1) is absolutely conver-

gent. The conclusion now follows by a straightforward approximation argument.

We call the terms where D > 0 and
√
D /∈ Q hyperbolic and the terms where

D < 0 elliptic.

3.1.2 Specialising the test function

In order to apply the trace formula as a certification tool, it is necessary to choose a

test function f that allows us to work out explicit expressions for the terms occurring

in Proposition 3.1.1. For this we consider the test function

f(y) = max

(
0, 1− y2

X

)k

, (3.2)

where k ≥ 4 is an integer and X is a positive real number. We see this is an even, C3

function that is supported on [−
√
X,

√
X], so it satisfies our criteria in Proposition

3.1.1. The next proposition makes each term in the trace formula explicit for this

test function.

Proposition 3.1.2. Let n,D be non-zero integers, a,X be positive real numbers

and k ≥ 4 be an integer. Assume that D ≥ −4n and X > max(D, (a− n/a)2), and

set

b =

√
X +

√
X + 4n

2a
, A =

n+ ab
√
X

|n|
, x =

√
X/|D|.

Then, with f and h as defined in (3.2) and Proposition 3.1.1, we have

44

3.1. Verification algorithm

(i) h(r) = 2 · k!
(
A|n|
X

)k k∑
j=0

(−1)j
(
k

j

)
Re

(
Air−2j∏k−j

l=−j(l + ir)

)
for r ∈ R \ {0};

(ii) h(0) = 2

∫ ∞

0

f
(
v − n

v

) dv
v

= 2

(
A|n|
X

)k k∑
j=0

(
k

j

)2

A−2j

(
logA+

j∑
l=1

1

l
−

k−j∑
l=1

1

l

)
;

(iii)

∫
R
f
(√

y2 −min(4n, 0)
)
dy = 2

√
X

(
1 +

min(4n, 0)

X

)k+ 1
2

k∏
j=1

2j

2j + 1
;

(iv)

∫ ∞

√
|D|

f(y) dy

y +
√

|D|
= (1−x−2)k log

(
x+ 1

2

)
−

k∑
j=0

(
k

j

)
(−x2)−j

2j∑
l=1

(−1)l−1x
l − 1

l
;

(v)
√
|D|
∫
R

f(y) dy

y2 + |D|
= 2(1 + x−2)k arctanx− 2

k∑
j=0

(
k

j

)
x−2j

j∑
l=1

(−1)l−1

2l − 1
x2l−1;

(vi) 2a

∫ ∞

a

f(v − n
v
)− f(a− n

a
)

v2 − a2
dv = f

(
a− n

a

)
log

(
b− 1

b+ 1

)
+ 2

k∑
m=−k

(
−a

2

n

)m k∑
j=|m|

(
k

j

)(
2j

j + |m|

)(n
X

)j |m|∑
l=1

b(2l−1) sgnm − 1

2l − 1
;

(vii)

∫ ∞

0

f(0)− f(y)

y2
dy =

2k + 1√
X

k∏
j=1

2j

2j + 1
;

(viii)

∫ ∞

0

f(y) + f(y−1)− f(0)

y
dy = logX −

k∑
j=1

1

j
.

Proof. Using the definition of h and making the change of variables v 7→
√
|n|u, we

have

h(r) = 2|n|−ir

∫ ∞

0

max

(
0, 1− v2 − 2n+ (n/v)2

X

)k

v2ir
dv

v

=

∫ ∞

0

max

(
0, 1 +

2n

X
− |n|
X

(
u+ u−1

))k

uir
du

u

=

(
|n|T
X

)k ∫ ∞

0

max

(
0, 1− u+ u−1

T

)k

uir
du

u
,

where T = X+2n
|n| ≥ 2.

45

3.1. Verification algorithm

Now let F : [2,∞) → C be a k-times differentiable function of compact support

and let s ∈ C. Applying integration by parts inductively, we derive

∫ ∞

0

F
(
u+ u−1

)
us
du

u
=

∫ ∞

0

F (k)
(
u+ u−1

) k∑
j=0

(−1)j
(
k

j

)
(s+ 2j − k)us+2j−k∏k

l=0(s+ j − l)

du

u
.

We can apply this to our specific test function F (t) = max
(
0, 1− t

T

)k
, noting that

F (k)(t) =


(−1)kk!

T k
if t < T,

0 if t > T.

Thus, using the above formula we obtain

∫ ∞

0

max

(
0, 1− u+ u−1

T

)k

uir
du

u
=

(−1)kk!

T k

∫ A

1
A

k∑
j=0

(−1)j
(
k

j

)
(ir + 2j − k)uir+2j−k∏k

l=0(ir + j − l)

du

u

=
(−1)kk!

T k

k∑
j=0

(−1)j
(
k

j

)
Air+2j−k − A−ir−2j+k∏k

l=0(ir + j − l)
,

where A = T+
√
T 2−4
2

= X+2n+
√
X2+4nX

2|n| , so that A + A−1 = T . Replacing (j, l) by

(k − j, k − l) in the above sum, we see that it becomes

2k!

T k

k∑
j=0

(−1)k−j

(
k

j

)
Re

(
Air+2j−k∏k

l=0(ir + j − l)

)
.

Now multiplying by
(

|n|T
X

)k
and replacing (j, l) by (k − j, k − j − l) in the above

sum yields (i).

To evaluate h(0), we write

h(r) =
AirH(r)− A−irH(−r)

2ir
,

where

H(r) = 2 · k!
(
A|n|
X

)k k∑
j=0

(−1)j
(
k

j

)
A−2j

∏
−j≤l≤k−j

l ̸=0

(l + ir)−1.

46

3.1. Verification algorithm

By l’Hôpital’s rule, we have

h(0) = (logA)H(0)− iH ′(0).

Hence, a straightforward evaluation of H(0) and H ′(0) gives (ii).

Next, making the substitution y 7→ u
√
X +min(4n, 0), we obtain

∫
R
f
(√

y2 −min(4n, 0)
)
dy =

∫
R
max

(
0, 1− y2 −min(4n, 0)

X

)k

dy

=
√
X

(
1 +

min(4n, 0)

X

)k+ 1
2
∫ 1

−1

(
1− u2

)k
du,

which yields (iii).

For the next term, making the substitution y 7→ u
√
X, we have

∫ √
X

√
|D|

f(y) dy

y +
√

|D|
=

∫ 1

x−1

(1− u2)k

u+ x−1
du.

Writing (1− u2)k = (1− x−2)k + (1− u2)k − (1− x−2)k and applying the binomial

theorem to the last two terms, we get

∫ 1

x−1

(1− u2)k

u+ x−1
du =

∫ 1

x−1

(1− x−2)k

u+ x−1
du+

k∑
j=0

(
k

j

)
(−1)j

∫ 1

x−1

u2j − x−2j

u+ x−1
du.

Expanding the right-most integrand into a geometric series, we obtain

u2j − x−2j

u+ x−1
= −x1−2j

2j∑
l=1

(−xu)l−1.

Integrating each term of this sum over [x−1, 1] yields (iv).

Similarly,

√
|D|
∫
R

f(y) dy

y2 + |D|
= x−1

∫ 1

−1

(1− u2)k

u2 + x−2
du

= x−1

∫ 1

−1

(1 + x−2)k

u2 + x−2
du+ x−1

k∑
j=0

(
k

j

)∫ 1

−1

(−u2)j − (x−2)j

u2 + x−2
du

= 2
(
1 + x−2

)k
arctanx− 2

k∑
j=0

(
k

j

)
x−2j

j∑
l=1

(−1)l−1

2l − 1
x2l−1.

For (vi), we begin by noting that (v − n/v)2 ≤ X for a ≤ v ≤ ab, hence

47

3.1. Verification algorithm

f(n − n/v) = (1 − (v − n/v)2/X)k in this region. Applying the binomial theorem

twice, we find that

f(v − n
v
)− f(a− n

a
)

v2 − a2
=

k∑
j=0

(
k

j

)(n
X

)j j∑
m=−j

(
2j

j + |m|

)
(−n)−mv

2m − a2m

v2 − a2
.

Now, expanding the right-most fraction into a geometric series, we find that

a

∫ ab

a

v2m − a2m

v2 − a2
dv = a2m

|m|∑
l=1

b(2l−1) sgnm − 1

2l − 1
.

Plugging this into the above equation and rearranging the sum over the values of

m to go between m = −k to k yields the first part of (vi). The second part arises

from the contribution of the integral over v > ab, where f(v − n/v) = 0. That is,

2a

∫ ∞

ab

f
(
v − n

v

)
− f

(
a− n

a

)
v2 − a2

dv = −f
(
a− n

a

)∫ ∞

b

2 du

u2 − 1
= −f

(
a− n

a

)
log

b+ 1

b− 1
.

Turning to (vii), we use integration by parts and the substitution y 7→ u
√
X to

obtain∫
R

f(0)− f(y)

y2
dy = −

∫
R

f ′(y)

y
dy =

2k√
X

∫ 1

−1

(
1− u2

)k−1
du =

4k + 2√
X

k∏
j=1

2j

2j + 1
.

Finally, for (viii), we have∫ ∞

0

f(y) + f(y−1)− f(0)

y
dy = 2

∫ 1

0

f(y) + f(y−1)− f(0)

y
dy

= 2

∫ 1

0

f(y)− f(0)

y
dy + 2

∫ ∞

1

f(y)

y
dy

= 2

∫ √
X

0

f(y)− f(0)

y
dy + 2f(0)

∫ √
X

1

1

y
dy.

Now using the substitution y 7→ u
√
X and noting that f(0) = 1, this becomes

logX − 2

∫ 1

0

1− (1− u2)k

u
du = logX −

∫ 1

0

1− vk

1− v
dv = logX −

k∑
j=1

1

j
.

48

3.1. Verification algorithm

3.1.3 Idea of the algorithm

As noted before, we see the class number for real quadratic fields appearing in the

hyperbolic terms in the Selberg trace formula in Proposition 3.1.1. The main idea

of our algorithm is to compute the spectral side of the trace formula with known

Maass form data, bound its tail and see if the two sides of the trace formula match

with our class group data. For this section we shall assume that we are using the

test function f defined by (3.2).

To begin, suppose we have rigorously computed values for rj and aj(n) for j ≤ J

and |n| ≤M , so that we may compute the spectral side of the trace formula to high

accuracy. There will be some error arising from the terms with j > J , for which

we have no data. More details on how to explicitly estimate the tail of the spectral

sum will be given in Section 3.1.3, but suppose for now that we can bound by the

tail by some positive real number En. By the explicit form of the trace formula we

derived in Proposition 3.1.1, we have

∑
t∈Z

D=t2−4n<0

L(1, ψD)

√
|D|
π

∫
R

f(y) dy

y2 + |D|
+

∑
t∈Z√

D=
√
t2−4n ̸∈Q

0<D≤X

L(1, ψD)

(
1− D

X

)k

=
∞∑
j=1

aj(n)h(rj)−
∑
a∈N
a|n

Φ(a)

≤
J∑

j=1

aj(n)h(rj) + En −
∑
a∈N
a|n

Φ(a).

(3.3)

Now, suppose we have a list of class numbers computed using our conditional

algorithm. A priori we do not know that the class numbers are correct, but we

know that each computed value is a factor of the true value (being the order of some

subgroup of the class group). Hence our data can be used to compute a rigorous

lower bound for the left-hand side of (3.3), since the terms are non-negative. (In

order to compute L(1, ψD) for D > 0, we also need the corresponding regulators.

Although the fastest algorithms for that also rely on GRH, they can be independently

verified using the method of [dHJW07]. Hence we may assume that the regulators

are known unconditionally.)

Moreover, any incorrect value must be off by at least a factor of 2. Hence, in

order to certify a given class number, we just need to show that it is not at least

twice as large as we think it is. To this end, we double the corresponding term in the

49

3.1. Verification algorithm

hyperbolic sum and then compute the full hyperbolic sum. If the sum exceeds the

right-hand side of (3.3) then we get a contradiction, and hence our purported value

of the class number must have been correct. Heuristically we expect the truncation

error to be much smaller than our rigorous estimate En, so we expect to be able

to certify all d for which L(1, ψd)(1 − d/X)k exceeds En. Note that considering

all n ∈ Z \ {0} with |n| ≤ 1
2

√
X − 1 suffices to cover all non-square discriminants

d ≤ X.

In our case, we have the first 2184 Laplace eigenvalues with r ∈ (0, 177.75] com-

puted by Andreas Strömbergsson using Hejhal’s algorithm [Hej99] and certified using

the program from [BSV06]. The proof of their completeness is given in Corollary 1.2

in [BP19]. In Section 3.2 we use a rigorous version of Hejhal’s “Phase 2” algorithm

to compute all of the needed Hecke eigenvalues, aj(n). The next few sections discuss

how to explicitly bound the tail of the spectral sum, and estimate the efficiency of

the algorithm with our given data.

Bounding the tail of the spectral sum

In order to apply the above algorithm we require an explicit bound on the tail of

the spectral sum. To begin, using Proposition 3.1.2 (i), we have that

|h(r)| ≤ 2 · k!
|r|k+1

,

which becomes sharp in the limit as X → ∞. Using this estimate, we can bound

the tail of the spectral sum without needing specific estimates of the terms of the

trace formula. Namely, we need to find an explicit bound for the sum∑
j:rj>R

r−k−1
j ,

for some positive real R.

The main idea here is to use the fact that the eigenvalue counting function

N(t) = # {j : rj ≤ t}, is majorised by its Weyl asymptotic. More precisely, let

M(t) =
t2

12
− 2t

π
log

t

e
√

π
2

− 131

144
and S(t) = N(t)−M(t).

Then, from [Hej83, Ch. 10, Thm. 2.29] we have

S(t) = O

(
t

log t

)
for t > 1.

50

3.1. Verification algorithm

In order to apply this numerically, we require an explicit constant for the big-O.

Currently this has not been worked out, however we can remedy this by using an

integrated version derived in [BP19, Theorem 1.1]. Explicitly, define

S1(t) =
1

t

∫ t

0

S(u) du and E(t) =

(
1 +

6.59125

log t

)(
π

12 log t

)2

.

Then,

S1(t) ≤ E(t) for all t > 1. (3.4)

Consider∑
j:rj>R

r−k−1
j =

∫ ∞

R

t−k−1 dN(t) =

∫ ∞

R

t−k−1M ′(t) dt+

∫ ∞

R

t−k−1 dS(t).

Applying integration by parts to the last integral twice, the above becomes

∑
j:rj>R

r−k−1
j =

∫ ∞

R

t−k−1M ′(t) dt− S(R) + (k + 1)S1(R)

Rk+1

+ (k + 1)(k + 2)

∫ ∞

R

t−k−2S1(t) dt.

Using the bound (3.4) and our explicit form of M(t), we obtain

∑
j:rj>R

r−k−1
j ≤ 1

6(k − 1)Rk−1
−

2 log(R
√

2/π) + 2/k

πkRk

− S(R) + (k + 1)S1(R)

Rk+1
+

(k + 2)E(R)

Rk+1
.

For given values of R and k, we can easily check that the non-principal terms con-

tribute a negative amount. Thus, using our data with R ≤ 177 and k ≤ 15, we find

that

∑
j:rj>R

r−k−1
j ≤ R1−k

6(k − 1)
.

Using this and the bound on the Hecke eigenvalues (1.5) due to Kim and Sarnak,

51

3.1. Verification algorithm

we can bound the tail by∣∣∣∣∣∣
∑

j:rj>R

aj(n)h(rj)

∣∣∣∣∣∣ ≤ b(n)
∑

j:rj>R

|h(rj)| ≤ 2b(n)k!
∑

j:rj>R

r−k−1
j ≤ b(n)k!

3(k − 1)
R1−k.

(3.5)

3.1.4 Efficiency

We can use our explicit bound of the spectral tail (3.5) to get an idea of how

efficient this algorithm will be. We will be able to certify a given d provided that the

corresponding hyperbolic term on the right-hand side of (3.3) exceeds the amount

that we overestimate the tail by. More explicitly, we should get

L(1, ψd)

(
1− d

X

)k

>
b(n)k!

3(k − 1)
R1−k −

∑
j:rj>R

aj(n)h(rj).

We do not know the sum over j in advance, but we expect it to be much smaller

than our estimate (3.5). Thus, we should succeed in certifying d as long as

d

X
⪅ 1− 1

R

(
b(n)k!R

3(k − 1)L(1, ψd)

)1/k

.

For instance, if X = 1011 then the worst case value of b(n) is 164.397 . . ., at-

tained at n = 151200. If we assume that L(1, χd) has roughly the same minimum

value as among the negative discriminants up to 1011 (viz., 0.17448, as computed

in [JRW06]), then the optimal k is 11, for which the above is about 94%. However,

already with k = 6 we get 92%, and that may allow us to get by with significantly

lower floating point precision. (Note that the total sum over d has size roughly
√
X,

but we are trying to detect variations of size L(1, χd)(1− d/X)k, which can be less

than 10−7 even with k = 6. Hence it is also essential that we work with interval

arithmetic in order to control for cancellation; we made use of the Arb library [Joh17]

for this purpose.) This analysis is also highly pessimistic in assuming that the worst

case for b(n) occurs simultaneously with the worst case for L(1, χd).

52

3.2. Rigorous computation of the Hecke eigenvalues

3.2 Rigorous computation of the Hecke eigenval-

ues

In order to compute the truncated sum on the spectral side of the trace formula,

we require a large list of Hecke eigenvalues for each of the Laplace eigenvalues.

As noted before, we have approximations of the Laplace eigenvalues of the first

2184 Maass forms of level 1, as well as a rigorously verified list of the first several

Hecke eigenvalues for each form. All this data has been computed and verified to

better than 300 bits of precision, which allows us to compute a given Maass form

f(z) for any z in the fundamental domain to approximately this accuracy. In turn,

we can compute many more Hecke eigenvalues using the “Phase 2” part of Hejhal’s

algorithm [Hej99]. In this section we explain how to carry out the Phase 2 algorithm

rigorously. (See [Str05, Sec. 1.3.3] for more details on this Phase 2 algorithm).

Let f be a Maass cusp form on PSL(2,Z) with Laplace eigenvalue λ = 1
4
+ r2

and Hecke eigenvalues am. Let ω = 0 if f is even and ω = 1 if f is odd. Its Fourier

expansion is of the form

f(x+ iy) =
∞∑

m=1

am√
m
W̃ir(2πmy) cos

(ω)(2πmx)

where W̃ir(x) = e
πr
2 Wir(x) =

√
xe

π
2
rKir(x) and Kir(x) is the K-Bessel function. In

addition, cos(ω) = cos if ω = 0 and cos(ω) = sin if ω = 1.

Fix N ∈ N, Y > 0 and define the 2N points

zj = xj + iY =
j − 1

2

2N
+ iY,

where 1 −N ≤ j ≤ N . Now if we consider the discrete Fourier transform of f , for

some integer k, on these points we get

N∑
j=1

f(zj) cos
(ω)(2πkxj) =

N∑
j=1

∞∑
m=1

am√
m
W̃ir(2πmY) cos(ω)(2πmxj) cos

(ω)(2πkxj)

=
∞∑

m=1

am√
m
W̃ir(2πmY)

N∑
j=1

cos(ω)(2πmxj) cos
(ω)(2πkxj).

Here we can use the trigonometric identity cos(ω)(x) cos(ω)(y) = 1
2
cos(x − y) +

53

3.2. Rigorous computation of the Hecke eigenvalues

(−1)ω cos(x+ y), to obtain

N∑
j=1

f(zj) cos
(ω)(2πkxj)

=
1

2

∞∑
m=1

am√
m
W̃ir(2πmY)

[
N∑
j=1

cos(2π(m− k)xj) + (−1)ω
N∑
j=1

cos(2π(m+ k)xj)

]
.

(3.6)

Our goal is to extract the k-th term of the series on the right-hand side and then

get an expression for the rest of the sum which we will bound later. We have

N∑
j=1

cos(2π(m± k)xj) =
1

2

N∑
j=1

(
e2π(m±k)xj + e−2π(m±k)xj

)
=

1

2
e−

m±k
2N

πi

N∑
j=1

e2πi
(m±k)j

2N +
1

2
e

m±k
2N

πi

N∑
j=1

e−2πi
(m±k)j

2N .

Now if 2N | (m±k), then
∑N

j=1 e
±2πi

(m±k)j
2N = N . Otherwise, using the fact that this

sum is a geometric series, we get 0. Thus we can simplify the above sum to

N∑
j=1

cos(2π(m± k)xj) =

{
(−1)

(m±k)
2N N if 2N | (m± k),

0 otherwise.
(3.7)

Hence combining the results of (3.6) and (3.7), we have

2

N

N∑
j=1

f(zj) cos
(ω)(2πkxj) =

∑
m≥1

m≡k(2N)

am√
m
W̃ir(2πmY)(−1)

(m−k)
2N

+ (−1)ω
∑
m≥1

m≡−k(2N)

am√
m
W̃ir(2πmY)(−1)

(m+k)
2N

=
ak√
k
W̃ir(2πkY) + E0,

where

E0 =
∞∑
j=1

(−1)j
[

a2jN+k√
2jN + k

W̃ir(2π(2jN + k)Y) + (−1)ω
a2jN−k√
2jN − k

W̃ir(2π(2jN − k)Y)

]
.

(3.8)

In order for the above truncation to be valid we require k ≤ N . Let z∗j be the pullback

of zj into the fundamental domain defined by
{
z = x+ iy ∈ H | |z| ≥ 1 and |x| ≤ 1

2

}
.

54

3.2. Rigorous computation of the Hecke eigenvalues

Then by the modularity of f , we have f(zj) = f(z∗j). Thus

ak√
k
W̃ir(2πkY) =

2

N

N∑
j=1

f(z∗j) cos
(ω)(2πkxj)− E0

=
2

N

N∑
j=1

∞∑
m=1

am√
m
W̃ir(2πmy

∗
j) cos

(ω)(2πmx∗j) cos
(ω)(2πkxj)− E0

=
2

N

N∑
j=1

 Lj∑
m=1

am√
m
W̃ir(2πmy

∗
j) cos

(ω)(2πmx∗j) + Ej

 cos(ω)(2πkxj)− E0,

where Lj ∈ N depending on j and

Ej =
∞∑

m=Lj+1

am√
m
W̃ir(2πmy

∗
j) cos

(ω)(2πmx∗j). (3.9)

Here we can consider the total error given by

E =
2

N

N∑
j=1

Ej cos(ω)(2πkxj)− E0. (3.10)

Hence our main computation formula becomes

ak√
k
W̃ir(2πkY) =

2

N

N∑
j=1

Lj∑
m=1

am√
m
W̃ir(2πmy

∗
j) cos

(ω)(2πmx∗j) cos
(ω)(2πkxj) + E .

Computationally, we can see this is just a discrete cosine/sine transformation

with respect to the Hecke eigenvalues. Thus, once we have values of Y and N ,

discussed in Subsection 3.2.2, we can apply a standard computational library on

Fast Fourier Transforms to compute these sums.

Our goal now is to bound the total error E explicitly so that it can aid us in our

computations.

3.2.1 Bounding the error

To begin, we have

|E| ≤

∣∣∣∣∣ 2N
N∑
j=1

Ej cos(ω)(2πkxj)

∣∣∣∣∣+ |E0| ≤ 2 max
1≤j≤N

{|Ej|}+ |E0|.

55

3.2. Rigorous computation of the Hecke eigenvalues

We now want to bound the individual parts appearing in the above bound. For this

we require the following two lemmas. The first is bound on the Fourier coefficients

from Kim–Sarnak [Kim03], which we already saw in Section 2.1.4.

Lemma 3.2.1. Let f be a Maass cusp form of level 1 with Hecke eigenvalues am.

Then for all non-zero m ∈ Z we have∣∣∣∣ am√
m

∣∣∣∣ ≤ η := 1.758.

The second lemma we require is a bound on theK-Bessel function due to Booker,

Strömbergsson and Then [BT18, Prop. 1].

Lemma 3.2.2. For all y > r > 0 we have

|W̃ir(y)| = e
π
2
r√y|Kir(y)| ≤

√
π

2

√
y

4
√
y2 − r2

e−ru(y/r),

where u(t) =
√
t2 − 1− arctan(

√
t2 − 1) for t ≥ 1.

We can now directly apply the above lemmas to bound the sums appearing in

E .

Proposition 3.2.3. Let bm be an increasing arithmetic sequence for 1 ≤ m ≤ ∞
with b1 > r and arithmetic difference d. Then

∞∑
m=1

∣∣∣∣ am√
m
W̃ir(bm)

∣∣∣∣ < Br,b1,d := η

√
π

2

√
b1

4
√
b21 − r2

e−ru(b1/r)

(
1 +

b1

d
√
b21 − r2

)
.

Proof. We begin by noting that the function
√
y

4
√

y2−r2
is decreasing for y > r. Hence

by applying both of the above lemmas we get

∞∑
m=1

∣∣∣∣ am√
m
W̃ir(bm)

∣∣∣∣ < η

√
π

2

√
b1

4
√
b21 − r2

∞∑
m=1

e−ru(bm/r).

The goal here is to majorise the exponential sum by a geometric series. For this,

we note that the function e−ru(y/r) is decreasing for y > r and u′(t) =
√
1− t−2 is

increasing for t > 1. Hence for all t2 > t1 > 1, we have

u(t2) ≥ u(t1) + (t2 − t1)u
′(t) = u(t1) + (t2 − t1)

√
1− t−2

1 .

56

3.2. Rigorous computation of the Hecke eigenvalues

Thus, for all m ≥ 1 we obtain

ru(bm/r) ≥ ru(b1/r) +
√
b21 − r2

bm − b1
b1

.

We can now bound the exponential sum by

∞∑
m=1

exp(−ru(bm/r)) ≤ exp(−ru(b1/r)) exp(
√
b21 − r2)

∞∑
m=1

exp

(
−
√
b21 − r2

b1
bm

)

≤ exp(−ru(b1/r))

(
1− exp

(
−
√
b21 − r2

b1
d

))−1

.

To get the final result we use the fact that (1− e−x)−1 < 1 + x−1 for x > 0.

Using Proposition 3.2.3 we can compute bounds for the errors E0 and Ej.

Proposition 3.2.4. Let L,M ∈ N with 0 < k ≤ M < N , 2πY (2N −M) > r, and√
3π(L+ 1) > r. Then we have

|E0| ≤ 2Br,2πY (2N−M),4πY N ,

|Ej| ≤ Br,
√
3π(L+1),

√
3π

for all 1 ≤ j ≤ N .

Proof. From Lemma 3.2.2, we see that |Wir(y)| is decreasing for y > r. Now using

the definition of E0 from (3.8), we have

|E0| ≤

∣∣∣∣∣
∞∑
j=1

a2jN+k√
2jN + k

Wir(2π(2jN + k)Y) + (−1)ω
∞∑
j=1

a2jN−k√
2jN − k

Wir(2π(2jN − k)Y)

∣∣∣∣∣
≤

∞∑
j=1

∣∣∣∣ a2jN+1√
2jN + 1

Wir(2π(2jN + 1)Y)

∣∣∣∣+ ∞∑
j=1

∣∣∣∣ a2jN−M√
2jN −M

Wir(2π(2jN −M)Y)

∣∣∣∣ .
Thus applying Proposition 3.2.3 we obtain the result.

For Ej, we note that since all the z∗j are in the fundamental domain, we have

y∗j >
√
3/2 for all j. Hence from the definition of Ej from (3.9) we get

|Ej| ≤
∞∑

m=L+1

∣∣∣∣ am√
m
Wir(2πmy

∗
j)

∣∣∣∣ < Br,2π(L+1)y∗j ,2πy
∗
j
≤ Br,

√
3π(L+1),

√
3π,

by Proposition 3.2.3.

In practice we choose L to be the number of initial Fourier coefficients that

57

3.2. Rigorous computation of the Hecke eigenvalues

we know. We ensure this is sufficiently large that the error is dominated by our

estimate for |E0|, i.e. that Br,
√
3π(L+1),

√
3π ≤ Br,2πY (2N−M),4πY N . Hence we can bound

the overall truncation error by

|E| ≤ 4Br,2πY (2N−M),4πY N .

3.2.2 Choosing Y and N

For our code, we letM be the largest indexed Fourier coefficient we wish to compute.

We will only need to consider the Fourier coefficients ap for p ≤ M prime since the

others can be computed using the Hecke relations from this data. To help control

the error we have to carefully choose the parameters Y and N . To begin we note

that the W̃ir(y) decays exponentially for y > r from the K-Bessel function.

We start by choosing Y = r/M . Then we compute W̃ir(2πpY) for all primes

p ≤ M . The aim of this is to see if we are near any of the zeros of the K-Bessel

function in its oscillatory region, which would cause our error bound to blow up. If

we are too close to a zero, we can change Y slightly so that we move away from this

zero. However, we have to make sure we do not make any other values of W̃ir(2πpY)

close to a different zero. This is essentially a min-max problem of minimising the

value of Y whilst maximising the distance of the values of W̃ir(2πpY) away from

zero.

Once we have a value for Y , we can work on finding N . To do this we first fix a

precision of B bits, and then we bound our error |E| to be roughly 2−B, that is

|E| ≤ 4Br,2πY (2N−M),4πY N = 2−B.

Note, in practice we will want to choose B larger than our desired error due to

rounding errors and the fact we will be dividing by W̃ir. Now, we know all the

constants r, Y,M and B, hence we can rearrange the above to become

Q(N) :=
1

η

√
2

π
Br,2πY (2N−M),4πY N =

1

η

√
2

π
2−B−2.

Hence to find N , we just need to find the root of

Q(N)− 1

η

√
2

π
2−B−2.

We can find this numerically by just applying a bisection algorithm to this function.

58

3.3. Computation

3.3 Computation

3.3.1 Theoretical complexity

The computation of the Maass forms is possible in polynomial time, [Str05, §1.3.4].
Since we can take k arbitrarily large in the analysis in Section 3.1.4, the eigenvalue

cutoff R can grow slowly as a function of X, and the time to compute the spectral

side is therefore dominated by the computation of the Hecke eigenvalues, which is

O(X
1
2
+ε) for each form (see Section 3.2).

Thus, the slowest part of the computation of the right-hand side of (3.3) is the

sum over m appearing in Φ, which has roughly
√
X

a logX
non-zero terms. Summing over

a | n and |n| ≤
√
X gives O(X

logX
) terms in total. However, this is still swamped by

the roughly X terms appearing on the left-hand side of (3.3) in the hyperbolic sum.

This motivates our choice of our test function, which makes the hyperbolic terms

simple to compute. This gives overall complexity of O(X1+ε) for the verification.

As described in the introduction, the complexity to conditionally compute the

class group for a fixed discriminant d is O(d1/4+ε) using Buchmann’s algorithm

[BS05]. Further to this, we also require the computation of the regulator, which

can be computed and unconditionally verified in O(d1/6+ε) [dHJW07]. Hence, the

computation of the class group and regulator up to discriminant X will be done in

time O(X
5
4
+ε) overall. Asymptotically one could turn to an index calculus based

algorithm with heuristic complex O(X1+ε). Unfortunately, the correctness of the

index calculus approach depends on GRH in several ways, and there is currently no

known method of verifying its output in subexponential time. This analysis shows

that the verification part should be faster than the time it takes to compute the

class numbers and regulators in the first place.

3.3.2 Implementation

We implemented this verification algorithm on data computed with a modification

of the generic group structure algorithm of Buchmann and Schmidt [BS05] for pro-

ducing the table of class groups, which allowed us to extend significantly the table of

known class groups to include all fields of discriminant up to 1011. Most importantly,

thanks to the new verification algorithm, our results are unconditionally correct for

d ≤ 1011, requiring no assumptions of Riemann hypotheses.

Using the ideas and reasoning in Section 3.3.1 we ran our verification with k = 6.

We made two runs on a machine with 64 cores (2.5 GHz AMD Opteron processors),

with the following results:

59

3.3. Computation

X certified up to running time

1.1× 1010 10 378 129 942 5 hours

1.1× 1011 103 455 923 536 57 hours

In both runs, the efficiency was better than 94%, and about 1.3% of the computation

time was spent on the right-hand side of (3.3).

60

Chapter 4

Rigorous implementation of Hejhal’s

algorithm

In the 1990s, Hejhal [Hej99] introduced an algorithm to compute the Laplace and

Hecke eigenvalues of Maass cusp forms. This algorithm was generalised to general

congruence and non-congruence subgroups by Strömberg in 2006 [Str05]. This al-

gorithm works very well in practice, however it relies on a heuristic argument and

thus is not rigorous.

In this chapter we describe a method to rigorously implement Hejhal’s algorithm,

once you already know the Laplace eigenvalue of the Maass forms exists in some

interval. Essentially, the main idea here is to apply Newton’s method on the Hejhal

system matrix where the derivatives are taken with respect to the Laplace eigenvalue

r.

The main result of this chapter is a test to prove whether or not the matrix

appearing from Hejhal’s algorithm for level 1 Maass forms is well behaved as the

matrix size increases. This will form part of joint work with David Lowry-Duda

on actually implementing this algorithm to improve the precision of Maass forms in

general.

4.1 Hejhal’s algorithm for level 1

Let H = {z = x + iy | y > 0} denote the upper half plane and let F = {z =

x+ iy | |x| ≤ 1/2, |z| ≥ 1} denote the fundamental domain for PSL(2,Z) acting on

H by Möbius transformations. To begin, we shall only describe in detail Hejhal’s

algorithm for even forms, however it is very easy to adapt this for odd forms by

swapping all the cosines with sines.

Let f be a even Maass cusp form with Laplace eigenvalue λ = 1
4
+ r2 and Hecke

eigenvalues am. It has a Fourier series, see Section 1.3, given by

f(z) = f(x+ iy) =
∞∑

m=1

am√
m
Wir(2πmy) cos(2πmx).

The overall aim of Hejhal’s algorithm is to create a linear system to solve for

61

4.1. Hejhal’s algorithm for level 1

the Fourier coefficients for a fixed value r. We then use an auxiliary equation to

help zoom in on the values of r that give suspected genuine Maass forms. For this

description of Hejhal’s algorithm, we shall ignore any error analysis. To begin, we

truncate the above Fourier series for some M ∈ N, to get

f(z) ≈
M∑

m=1

am√
m
Wir(2πmy) cos(2πmx). (4.1)

We can now view the sum in (4.1) as a discrete cosine transform in x. We shall now

perform an inverse discrete cosine transform along the following horocycle below F :{
zm = xm + iY

∣∣∣∣xm =
1

2Q

(
m− 1

2

)
, 1−Q ≤ m ≤ Q

}
,

for some Y < Y0 =
√
3
2

and Q > M . Taking the inverse transform for some 0 < n ≤
M < Q, we obtain

an√
n
Wir(2πnY) ≈ 1

Q

Q∑
m=1−Q

f(zm) cos(2πnxm)

≈ 1

Q

Q∑
m=1−Q

f(z∗m) cos(2πnxm),

where zm = xm + iym = xm + iY ∈ C and z∗m = x∗m + iy∗m is its F -pullback. From

this relation we get the following linear system valid for all 0 < n ≤M < Q,

an√
n
Wir(2πnY) ≈

∑
0<k≤M

akVnk (4.2)

where

Vnk =
1

Q

Q∑
m=1−Q

Wir(2πky
∗
m) cos(2πkx

∗
m) cos(2πnxm). (4.3)

Restricting to 1 ≤ n ≤M , we obtain a system ofM linear equations forM unknowns

{an}1≤n≤M . We can rewrite the linear system to get

0 ≈
∑

0<k≤M

akṼnk (4.4)

where Ṽnk = Vnk − δnkWiR(2πnY). This system can be solved by normalising the

system with a1 = 1 and removing the first column from Ṽnk. Explicitly, let V (r)

62

4.2. Implementing Hejhal’s algorithm rigorously to improve precision

denote the (M − 1)× (M − 1)-matrix Ṽnk after removing the first row and column,

C denote the (M − 1)-vector of Fourier coefficients (an)M≥n≥2 and b(r) denote the

negative of the first column vector separated from Ṽnk corresponding to a1 = 1.

Then we can rewrite our linear system as

V (r)C ≈ b(r), (4.5)

which can be solved. We also separate the first row of (4.4) as an auxiliary equation

and write it as

c(r) = C · v(r) + w(r) ≈ 0, (4.6)

where v(r) is the first row of V (r) and w(r) is Ṽ11.

Note, this linear system relies on the value of r, which we currently do not know.

To find the value of r, we shall first start with some initial guess of r, use this to solve

(4.5) to get approximations to the coefficients an, and then iterate this procedure

to minimise the error in the auxiliary equation (4.6). We repeat this for multiple

values of r until we believe we have found all of them up to some limit by comparing

to the Weyl law, see (1.4).

Alternatively, one could minimise the error of the multiplicativity of the Fourier

coefficients, say the equation a2a3 = a6, or solve (4.5) for two different values of

Y and minimise the difference of the coefficients, since for a true Maass form, the

Hejhal system will be invariant by the choice of Y . For more details on how one

would implement Hejhal’s algorithm in practice, see [Str05].

This final part of Hejhal’s algorithm is non-rigorous since we do not know before-

hand whether the Hejhal system is well behaved or if it will continue to converge.

4.2 Implementing Hejhal’s algorithm rigorously

to improve precision

In this section, we will setup the system of equations (4.5) and (4.6) so that they

can be implemented rigorously, once we know our Laplace eigenvalue exists in some

interval. To begin, let r be the numerical approximation for the Laplace eigenvalue

of a Maass form and ε > 0, such that we know the interval [r− ε, r+ ε] contains the

value of the unique and true (but unknown) Laplace eigenvalue r∗ of the purported

Maass form. This may seem quite restrictive, since the original Hejhal’s algorithm

does not give you this. However, we can use the rigorous data from the trace formula

63

4.2. Implementing Hejhal’s algorithm rigorously to improve precision

algorithm in Chapter 2 or from [BSV06] as a starting point.

Let δ be such that r∗ = r+δ. To make Hejhal’s algorithm rigorous, we shall need

to setup the Hejhal system whilst also keeping track of the various errors occurring.

Recall, the equations we shall be working with are

V (r)C ≈ b(r),

c(r) = C · v(r) + w(r) ≈ 0.

We wish to change the ≈ with = in the above equations. Let b♮ denote the vector

we get by truncating the Fourier series at M and setting up the system ignoring all

the error terms. Define e = V (r∗)C − b♮(r∗) and set b(t) = b♮(t) + e. Thus, b(t) is

precisely defined, although we are ignorant of its exact value. Let C(r) denote the

vector of Fourier coefficients obtained by the now well-defined Hejhal system at r

with V (r)C = b(r), such that C(r∗) = (a2, . . . , aM) gives the exact solution.

In practice, we just work in interval arithmetic and bound the tails of the trun-

cation, however we need this setup to describe the algorithm theoretically. Now, we

compute (using interval arithmetic) C(r) for our r and look at the auxiliary equation

c(r) = C(r) · v(r) + w(r) = 0,

where v(r) and w(r) are defined as before, but for our well-defined Hejhal system.

Near r∗, have that

c(r∗) = c(r) + c′(r)δ +
c′′(r̃)δ2

2
,

for some r̃ between r and r∗. Rearranging, we get that

|δ| = |c(r)− c(r∗)|
|c′(r) + c′′(r̃)δ/2|

.

To use this formula, we first numerically compute (using interval arithmetic)

interval approximations to c(r) and c′(r) and rigorously bound c(r∗) and c′′(r̃).

Furthermore, since |δ| ≤ ε, if we have that ε|c′′(r̃)| < |c′(r)|, then

|δ| ≤ 2

∣∣∣∣c(r)− c(r∗)

c′(r)

∣∣∣∣ .
Thus, if we run this system and we find the above to be true, then we would have

rigorously zoomed in on our Laplace eigenvalue. Unfortunately in this setup, there

is no way to know beforehand whether the matrix V −1(r) is well-conditioned or that

64

4.3. Proof of well-conditioned Hejhal system for even forms

c′(r) is not very small, meaning we cannot guarantee this algorithm will work all

the time. We will only be able to check this at runtime.

This implementation of improving the precision can be easily generalised to

Hejhal’s algorithm for higher levels. In the near future, David Lowry-Duda and

the author will be implementing this algorithm to improve the precision of the low-

precision estimates derived by the trace formula algorithm. In this we shall discuss

how to get rigorous bounds for c(r∗) and c′′(r̃).

4.3 Proof of well-conditioned Hejhal system for

even forms

For the rest of this chapter, we shall discuss how to test beforehand whether the

matrix V −1(r) is well conditioned as we increase the matrix size M . In this section

we shall setup Hejhal’s algorithm for even Maass forms for PSL(2,Z) in such a way

that we can use it theoretically. This version differs from how you would actually

implement this numerically.

Let f be an even Maass form on PSL(2,Z) with Laplace eigenvalue λ = 1
4
+ r2

and Hecke eigenvalues am. Let H = {z = x + iy | y > 0} denote the hyperbolic

upper half plane and let F = {z = x + iy ∈ H | 0 ≤ |x| ≤ 1/2, |z| ≥ 1} be the

fundamental domain of PSL(2,Z) along with the reflection operator z 7→ −z.

4.3.1 Explicitly defining Hejhal’s Algorithm

Let Y ∈ (0,
√
3/2) such that Wir(2πmY) ̸= 0 for any m ∈ N. We shall assume

that the values of Y and r are fixed. Let N,Q ∈ Z, such that Q > N > 1. We set

xm = am√
m
Wir(2πmY). We shall define Hejhal’s algorithm for xm with the parameters

(r, Y,N,Q).

To begin, consider the horocycle z(t) = t + iY for t ∈ [−1/2, 1/2]. This can be

pulled back into a unique closed path z∗(t) = x∗(t) + iy∗(t) ∈ F . We work in F
instead of the full fundamental domain F = {z = x + iy ∈ H | |x| ≤ 1/2, |z| ≥ 1}
since z∗(t) ∈ F is continuous and piecewise smooth with respect to t here and f is

invariant under the reflection operator since it is even. For m ∈ Z>0, set

fm(t) =
Wir(2πmy

∗(t))

Wir(2πmY)
cos (2πmx∗(t)) .

65

4.3. Proof of well-conditioned Hejhal system for even forms

Next, define for n ∈ Z≥0,

hQ(n,m) =


2

Q

Q∑
j=1

fm

(
j − 1

2

2Q

)
cos

(
2πn

j − 1
2

2Q

)
if n > 0,

1

Q

Q∑
j=1

fm

(
j − 1

2

2Q

)
if n = 0.

(4.7)

Further defining

HN,Q = (δnm − hQ(n,m))2≤n,m≤N and bN,Q = (hQ(n, 1))2≤n≤N ,

we can set up the Hejhal system as follows,

HN,Q


x2
...

xN

 = bN,Q.

4.3.2 Proof of well-conditioned Hejhal system

For a square matrix with real entries, let ∥A∥ denote the Frobenius norm
√

Tr(ATA).

We make the convention ∥A−1∥ = ∞ if A is not invertable. We now state the main

result of this section.

Theorem 4.3.1. Let IN−1 denote the (N − 1) × (N − 1) identity matrix. Then

either,

(i) there exists a constant N0 = N0(r, y) such that ∥H−1
N,Q − IN−1∥ ≪r,Y 1 for all

Q > N ≥ N0, or

(ii) 1+∥H−1
N,Q−IN−1∥ ≫r,Y N3/2 for all Q > N > 1, with an effectively computable

constant.

Since the constant in (ii) is effective, we can detect which case we are in at run

time by taking N sufficiently large. Moreover, the set of r for which case (i) holds

is open, so if we get close enough to a true eigenvalue r∗ at which case (i) holds,

then it will continue to hold as we zoom in. We can prove this by using the effective

bound to establish a uniform upper bound for ∥H−1
N,Q − IN−1∥ for r in an interval.

66

4.3. Proof of well-conditioned Hejhal system for even forms

Proof. Define

h∞(n,m) = lim
Q→∞

hQ(n,m) =


4

∫ 1/2

0

fm(t) cos(2πnt) dt if n > 0,

2

∫ 1/2

0

fm(t) dt if n = 0,

(4.8)

so that

fm(t) =
∞∑
n=0

h∞(n,m) cos(2πnt).

For any t at which fm(t) is smooth, we have using the bounds from Appendix A

that

∂k

∂tk
fm(t) ≪r,Y,k m

ke
−2πm

(√
3

2
−Y

)
≪r,Y,k e

−δm,

for any fixed δ ∈ (0, 2π(
√
3
2
− Y)). Since fm is continuous, we can apply integration

by parts twice in (4.8) to see that

h∞(n,m) = Or,Y (n
−2e−δm). (4.9)

Thus, for any n with 1 ≤ n < Q, we have

hQ(n,m) =
∑
k≥0

k≡n (mod 2Q)

(−1)
k−n
2Q h∞(k,m) +

∑
k≥0

k≡−n (mod 2Q)

(−1)
k+n
2Q h∞(k,m)

= h∞(n,m) +
∞∑
j=1

(−1)j [h∞(2jQ+ n,m) + h∞(2jQ− n,m)] (4.10)

= Or,Y (n
−2e−δm).

Now consider pairs (N1, Q1), (N2, Q2) with N2 ≥ N1. Let H̃N1,Q1 be the (N2 − 1)×
(N2 − 1) block diagonal matrix which contains HN1,Q1 in the upper left and the

(N2−N1)× (N2−N1) identity matrix in the lower right. Set X = HN2,Q2 − H̃N1,Q1 .

Then the (n,m) entry of X is Or,Y (min(Q1, Q2)
−2e−δm) if max(n,m) ≤ N1 and

Or,Y (n
−2e−δm) otherwise. Thus, ∥X∥ = Or,Y (N

−3/2
1), that is ∥X∥ ≤ C(r, Y)N

−3/2
1

for some effectively computable constant C(r, Y) (details on how to compute this

67

4.4. Explicitly finding the O-constant

constant shall be given in Section 4.4). Consider

H−1
N2,Q2

− IN2−1 =
(
IN2−1 + H̃−1

N1,Q1
X
)−1

H̃−1
N1,Q1

− IN2−1

= (IN2−1 + T)−1
(
IN2−1 +

(
H̃−1

N1,Q1
− IN2−1

))
− IN2−1,

where T =
(
H̃−1

N1,Q1
− IN2−1

)
X +X. Suppose that 1 + ∥H−1

N1,Q1
− IN1−1∥ < N

3/2
1

C(r,Y)
,

so that 1 + ∥H−1
N1,Q1

− IN1−1∥ = (1− ε)
N

3/2
1

C(r,Y)
, for some ε > 0. Then T has norm at

most 1− ε, and Z = (IN2−1 + T)−1 − IN2−1 has norm at most ε−1 − 1, by using the

fact that Z = −T + T 2 − T 3 + Thus,

H−1
N2,Q2

− IN2−1 = (IN2−1 + Z)(IN2−1 + (H̃−1
N1,Q1

− IN2−1))− IN2−1

= Z + (H̃−1
N1,Q1

− IN2−1) + Z(H̃−1
N1,Q1

− IN2−1),

has norm at most ε−1(1+ ∥H−1
N1,Q1

− IN1−1∥)− 1, so that ∥H−1
N,Q − IN−1∥ is bounded

for N ≥ N1. If this conclusion does not hold for any N1 then we must have 1 +

∥H−1
N,Q − IN−1∥ ≥ N3/2

C(r,Y)
for all Q > N > 1.

4.4 Explicitly finding the O-constant

The goal of this section is to make the constant C(r, Y) given in the proof of Theorem

4.3.1 explicit for computation. For convenience we shall restrict 1
2
√
3
≤ Y <

√
3
2
.

The reason for this, is that when we compute the pullback of z(t) we only need to

apply the transformation z 7→ −1/z once, meaning we can write down an explicit

form of the pullback easier. Then, to get into F we only need to apply the maps

z 7→ z + 1 and z 7→ −z, which only affect the real part of z. Thus, using the fact

that cos(2πmx∗) only depends on x∗ mod Z and that it is even, we get that

fm(t) =
Wir(2πmy

∗(t))

Wir(2πmY)
cos(2πmx∗(t)) =

Wir

(
2πmY
t2+Y 2

)
Wir(2πmY)

cos

(
2πmt

t2 + Y 2

)
, (4.11)

for all t ∈ [0, 1/2] and 1
2
√
3
≤ Y <

√
3
2
.

In the proof of Theorem 4.3.1 we did integration by parts to get a big-O bound

on the matrix coefficients of the Hejhal system, which then gives us a bound on

the full matrix. Here we shall make the implied constants in all of this explicit and

computable. For small m we shall actually do integration by parts three times and

explicitly compute the bounds numerically. For large m we shall do integration by

parts twice and bound it analytically.

68

4.4. Explicitly finding the O-constant

4.4.1 Derivatives of fm

Before we begin getting the explicit constant, we shall need explicit formulas for the

first and second derivatives of fm(t). For this, we have

d

dt

(
2πmY

t2 + Y 2

)
= − 4πmY t

(t2 + Y 2)2
,

d

dt

(
2πmt

t2 + Y 2

)
= −2πm(t2 − Y 2)

(t2 + Y 2)2
.

Hence,

∂

∂t
fm(t) =

1

Wir(2πmY)

∂

∂t
Wir

(
2πmY

t2 + Y 2

)
cos

(
2πmt

t2 + Y 2

)
=

1

Wir(2πmY)

[
− 4πmY t

(t2 + Y 2)2
W ′

ir

(
2πmY

t2 + Y 2

)
cos

(
2πmt

t2 + Y 2

)
+

2πm(t2 − Y 2)

(t2 + Y 2)2
Wir

(
2πmY

t2 + Y 2

)
sin

(
2πmt

t2 + Y 2

)]
.

For the second derivative we have

d

dt

(
−4πmY t

(t2 + Y 2)2

)
= −−4πmY (Y 2 − 3t2)

(t2 + Y 2)3
,

d

dt

(
2πm(t2 − Y 2)

(t2 + Y 2)2

)
= −4πmt(t2 − 3Y 2)

(t2 + Y 2)3
.

Hence

∂2

∂t2
fm(t) =

1

Wir(2πmY)

[
4πmY (3t2 − Y 2)

(t2 + Y 2)3
W ′

ir

(
2πmY

t2 + Y 2

)
cos

(
2πmt

t2 + Y 2

)
(4.12)

+
16π2m2Y 2t2

(t2 + Y 2)4
W ′′

ir

(
2πmY

t2 + Y 2

)
cos

(
2πmt

t2 + Y 2

)
+

16π2m2tY (Y 2 − t2)

(t2 + Y 2)4
W ′

ir

(
2πmY

t2 + Y 2

)
sin

(
2πmt

t2 + Y 2

)
+

4πmt(3Y 2 − t2)

(t2 + Y 2)3
Wir

(
2πmY

t2 + Y 2

)
sin

(
2πmt

t2 + Y 2

)
− 4π2m2(t2 − Y 2)2

(t2 + Y 2)4
Wir

(
2πmY

t2 + Y 2

)
cos

(
2πmt

t2 + Y 2

)]
.

69

4.4. Explicitly finding the O-constant

4.4.2 Large m

Here we shall explicitly do the integration by parts that we did to achieve (4.9). We

have, for n > 0, that

h∞(n,m) = 4

∫ 1/2

0

fm(t) cos(2πnt) dt

= − 2

πn

∫ 1/2

0

f ′
m(t) sin(2πnt) dt

=
1

(πn)2

(
(−1)nf ′

m

(
1

2

)
−
∫ 1/2

0

f ′′
m(t) cos(2πnt) dt

)
,

where f ′
m(t) =

∂
∂t
fm(t) and noting that f ′

m(0) = 0. Hence we can bound the h∞(n,m)

terms by

|h∞(n,m)| ≤ Um

(πn)2
, (4.13)

where

Um :=

∣∣∣∣f ′
m

(
1

2

)∣∣∣∣+ ∫ 1/2

0

|f ′′
m(t)| dt.

For the following calculations, we shall need the following lemma.

Lemma 4.4.1. Let n ≥ 2 be an integer and x > 1 be a real number. Then we have

1 +
∞∑
j=1

(
1

(2jx− 1)n
+

1

(2jx+ 1)n

)
≤ ζ(n)

2n − 1

2n−1
,

and

∞∑
j=1

((
2x− 1

2jx+ 1

)n

+

(
2x− 1

2jx− 1

)n)
≤ 2ζ(n).

70

4.4. Explicitly finding the O-constant

Proof. For the first identity, we have that 2jx± 1 ≥ 2j ± 1 for all x > 1. Hence,

1 +
∞∑
j=1

(
1

(2jx− 1)n
+

1

(2jx+ 1)n

)
≤ 1 +

∞∑
j=1

(
1

(2j − 1)n
+

1

(2j + 1)n

)

= 2
∞∑
j=1

1

(2j − 1)n

= 2

(∞∑
j=1

1

jn
−

∞∑
j=1

1

(2j)n

)
= ζ(n)

2n − 1

2n−1
.

For the second identity, we have that

2x− 1

2jx± 1
=

2x± 1
j
−
(
1± 1

j

)
2jx± 1

=
1

j
−

1± 1
j

2jx± 1
≤ 1

j
,

for all x > 1 and j ≥ 1. Hence,

∞∑
j=1

((
2x− 1

2jx+ 1

)n

+

(
2x− 1

2jx− 1

)n)
≤ 2

∞∑
j=1

1

jn
= 2ζ(n).

We recall, from (4.10), we have

hQ(n,m) = h∞(n,m) +
∞∑
j=1

(−1)j [h∞(2jQ+ n,m) + h∞(2jQ− n,m)] .

Hence using the bound (4.13) and Lemma 4.4.1 we get, for all n < Q, that

|hQ(n,m)| ≤ |h∞(n,m)|+
∞∑
j=1

(−1)j [|h∞(2jQ+ n,m)|+ |h∞(2jQ− n,m)|]

≤ Um

π2

(
1

n2
+

1

(2Q− n)2
+

1

(2Q+ n)2
+

1

(4Q− n)2
+ . . .

)
≤ Um

4n2
.

71

4.4. Explicitly finding the O-constant

Furthermore, also using Lemma 4.4.1, we get for all 0 < Q1 < Q2 that

|hQ1(n,m)− hQ2(n,m)| ≤
∑

v∈{1,2}

∞∑
j=1

(|h∞(2jQv + n,m)|+ |h∞(2jQv − n,m)|)

≤ Um

π2

∑
v∈{1,2}

∞∑
j=1

(
1

(2jQv + n)2
+

1

(2jQv − n)2

)

=
Um

π2

∑
v∈{1,2}

1

(2Qv − n)2

∞∑
j=1

((
2Qv − n

2jQv + n

)2

+

(
2Qv − n

2jQv − n

)2
)

≤ Um

3

(
1

(2Q1 − n)2
+

1

(2Q2 − n)2

)
.

Our goal now is to get an upper bound on Um that depends only on r and Y .

To do this we shall recall our bounds for Wir from Appendix A in the following

proposition.

Proposition 4.4.2. We have

|Wir(x)| ≤
√
π

2
e−x for all x > 0 and r > 0,

|W ′
ir(x)| ≤

√
π

2
e−x for all x ≥ 1 and r ≥ 5,

|W ′′
ir(x)| ≤

√
π

2
e−x for all x ≥ 1 and r ≥ 5,

|Wir(x)| ≥ ex0−xWir(x0) > 0 for all x ≥ x0 ≥
√
λ.

For level 1, we know the smallest even eigenvalue is r ≈ 13.77975 . . . [BSV06],

so these bounds are valid for us. We also recall we have the bounds of 0 ≤ t ≤ 1/2

and 1
2
√
3
≤ Y <

√
3
2
. To begin, we note that for x ≥ x0 ≥

√
λ, we have that

1

|Wir(2πmY)|
≤ exp(2πmY)

ex0Wir(x0)
≤ exp(2πmY)

e
√
λWir(

√
λ)

(4.14)

72

4.4. Explicitly finding the O-constant

For the first derivative of fm(t) at t = 1/2, we have that

2πmY(
1
4
+ Y 2

)2
∣∣∣∣∣W ′

ir

(
2πmY(
1
4
+ Y 2

))∣∣∣∣∣+ 2πm
∣∣1
4
− Y 2

∣∣(
1
4
+ Y 2

)2
∣∣∣∣∣Wir

(
2πmY(
1
4
+ Y 2

))∣∣∣∣∣
≤
√
π

2
exp

(
− 2πmY(

1
4
+ Y 2

))(2πmY +
∣∣1
4
− Y 2

∣∣(
1
4
+ Y 2

)2
)

≤ 3πm(1 +
√
3)

√
π

2
exp

(
− 2πmY(

1
4
+ Y 2

)) .
Hence, combining the above two results, we see that∣∣∣∣f ′

m

(
1

2

)∣∣∣∣ ≤√π

2
exp

(
m

(
2πY − 2πY

1
4
+ Y 2

))
3πm(1 +

√
3)

e
√
λWir(

√
λ)

.

Now we consider the second derivative of fm(t). To do this we shall bound each

of the terms in (4.12) and integrate them separately over 0 ≤ t ≤ 1/2 and add these

up. To begin, consider

4πmY |3t2 − Y 2|
(t2 + Y 2)

∣∣∣∣W ′
ir

(
2πmY

t2 + Y 2

)∣∣∣∣ ≤ 4mπ
√
π/2

Y 3
exp

(
− 2πmY

t2 + Y 2

)
.

Hence,∫ 1/2

0

4πmY |3t2 − Y 2|
(t2 + Y 2)

∣∣∣∣W ′
ir

(
2πmY

t2 + Y 2

)∣∣∣∣ dt ≤ 4mπ
√
π/2

Y 3

∫ 1/2

0

exp

(
− 2πmY

t2 + Y 2

)
dt

≤
4mπ

√
π/2

Y 3
exp

(
− 2πmY

1
4
+ Y 2

)∫ 1/2

0

dt

=
2mπ

√
π/2

Y 3
exp

(
− 2πmY

1
4
+ Y 2

)
.

Next, we consider

(4πmY t)2

(t2 + Y 2)4

∣∣∣∣W ′′
ir

(
2πmY

t2 + Y 2

)∣∣∣∣ ≤ 16π2m2Y 2t2
√
π/2

(t2 + Y 2)4
exp

(
− 2πmY

t2 + Y 2

)
≤

2πm
√
π/2

Y 3

4πmY t

(t2 + Y 2)2
exp

(
− 2πmY

t2 + Y 2

)
.

73

4.4. Explicitly finding the O-constant

Hence,∫ 1/2

0

(4πmY t)2

(t2 + Y 2)4

∣∣∣∣W ′′
ir

(
2πmY

t2 + Y 2

)∣∣∣∣ dt ≤ 2πm
√
π/2

Y 3

∫ 1/2

0

4πmY t

(t2 + Y 2)2
exp

(
− 2πmY

t2 + Y 2

)
dt

≤
2πm

√
π/2

Y 3
exp

(
− 2πmY

1
4
+ Y 2

)
.

Now, consider

(4πm)2tY |Y 2 − t2|
(t2 + Y 2)4

∣∣∣∣W ′
ir

(
2πmY

t2 + Y 2

)∣∣∣∣ ≤ 16π2m2tY |Y 2 − t2|
√
π/2

(t2 + Y 2)4
exp

(
− 2πmY

t2 + Y 2

)
≤

4πm
√
π/2

Y 2

4πmY t

(t2 + Y 2)2
exp

(
− 2πmY

t2 + Y 2

)
.

Hence,∫ 1/2

0

(4πm)2tY |Y 2 − t2|
(t2 + Y 2)4

∣∣∣∣W ′
ir

(
2πmY

t2 + Y 2

)∣∣∣∣ dt ≤ 4πm
√
π/2

Y 2

·
∫ 1/2

0

4πmY t

(t2 + Y 2)2
exp

(
− 2πmY

t2 + Y 2

)
dt

≤
4πm

√
π/2

Y 2
exp

(
− 2πmY

1
4
+ Y 2

)
.

Next, consider

4πmt|3Y 2 − t2|
(t2 + Y 2)3

∣∣∣∣Wir

(
2πmY

t2 + Y 2

)∣∣∣∣ ≤ 4πmt|3Y 2 − t2|
√
π/2

(t2 + Y 2)3
exp

(
− 2πmY

t2 + Y 2

)
≤

3
√
π/2

Y

4πmY t

(t2 + Y 2)2
exp

(
− 2πmY

t2 + Y 2

)
.

Hence,∫ 1/2

0

4πmt|3Y 2 − t2|
(t2 + Y 2)3

∣∣∣∣Wir

(
2πmY

t2 + Y 2

)∣∣∣∣ dt ≤ 3
√
π/2

Y

·
∫ 1/2

0

4πmY t

(t2 + Y 2)2
exp

(
− 2πmY

t2 + Y 2

)
dt

≤
3
√
π/2

Y
exp

(
− 2πmY

1
4
+ Y 2

)
.

74

4.4. Explicitly finding the O-constant

Finally, consider

4π2m2(t2 − Y 2)2

(t2 + Y 2)4

∣∣∣∣Wir

(
2πmY

t2 + Y 2

)∣∣∣∣ ≤ 4π2m2
√
π/2

Y 4
exp

(
− 2πmY

t2 + Y 2

)
.

Hence,∫ 1/2

0

4π2m2(t2 − Y 2)2

(t2 + Y 2)4

∣∣∣∣Wir

(
2πmY

t2 + Y 2

)∣∣∣∣ dt ≤ 4π2m2
√
π/2

Y 4

∫ 1/2

0

exp

(
− 2πmY

t2 + Y 2

)
dt

≤
4π2m2

√
π/2

Y 4
exp

(
− 2πmY

1
4
+ Y 2

)∫ 1/2

0

dt

≤
2π2m2

√
π/2

Y 4
exp

(
− 2πmY

1
4
+ Y 2

)
.

Combining each of these and (4.14), we see that

∫ 1/2

0

|f ′′
m(t)| dt ≤ exp

(
m

(
2πY − 2πY

1
4
+ Y 2

)) 3
Y
+m

(
4π
Y 2 +

4π
Y 3

)
+m2 2π2

Y 4

e
√
λWir(

√
λ)

.

Thus, overall we get that

|Um| ≤
√
π

2
exp

(
m

(
2πY − 2πY

1
4
+ Y 2

)) 3
Y
+m

(
3π(1 +

√
3) + 4π

Y 2 +
4π
Y 3

)
+m2 2π2

Y 4

e
√
λWir(

√
λ)

.

(4.15)

4.4.3 Small m

For small m, we shall do a similar treatment to what we did for large m, however

we shall not find upper bounds for the fm terms, and instead numerically compute

them. To begin we shall perform integration by parts three times to achieve

h∞(n,m) = 4

∫ 1/2

0

fm(t) cos(2πnt) dt

=
(−1)n

(πn)2
f ′
m(1/2) +

1

2(πn)3

∫ 1/2

0

f ′′′
m(t) sin(2πnt) dt.

Now, using the Cauchy–Schwartz inequality, we can bound the integral by(∫ 1/2

0

f ′′′
m(t) sin(2πnt) dt

)2

≤
∫ 1/2

0

f ′′′
m(t)2 dt

∫ 1/2

0

sin2(2πnt) dt =
1

4

∫ 1/2

0

f ′′′
m(t)2 dt.

75

4.4. Explicitly finding the O-constant

Hence,

h∞(n,m) ≤ (−1)n

(πn)2
f ′
m(1/2) +

1

4(πn)3

(∫ 1/2

0

f ′′′
m(t)2 dt

)1/2

.

Thus,

|h∞(n,m)| ≤ am
(πn)2

+
bm

(πn)3
,

where,

am =

∣∣∣∣f ′
m

(
1

2

)∣∣∣∣ and bm =
1

4

(∫ 1/2

0

f ′′′
m(t)2 dt

)1/2

.

From the definition of hQ(n,m) (4.8) and using Lemma 4.4.1, we get that

|hQ(n,m)| ≤
(

am
(πn)2

+
bm

(πn)3

)
+

∞∑
j=1

(
am
π2

(
1

(2jQ+ n)2
+

1

(2jQ− n)2

)
+
bm
π3

(
1

(2jQ+ n)3
+

1

(2jQ− n)3

))
≤ am

4n2
+

7ζ(3)bm
4π3n3

.

Similarly, also using Lemma 4.4.1, we have that

|hQ1(n,m)− hQ2(n,m)| ≤
∑

v∈{1,2}

∞∑
j=1

(
am
π2

(
1

(2jQv + n)2
+

1

(2jQv − n)2

)

+
bm
π3

(
1

(2jQv + n)3
+

1

(2jQv − n)3

))
≤ 2am

3(2Q1 − n)2
+

2ζ(3)bm
π3(2Q1 − n)3

.

4.4.4 Explicit bound on size of ∥X∥

Recall we defined X = HN2,Q2 − H̃N1,Q1 . Entrywise this is

X = (xnm)2≤n,m≤N2 =

{
hQ1(n,m)− hQ2(n,m) if 2 ≤ n,m ≤ N1,

−hQ2(n,m) otherwise.

76

4.4. Explicitly finding the O-constant

Hence, we have

∥X∥2 =
N2∑
n=2

N2∑
m=2

x2nm

=

N1∑
m=2

(
N1∑
n=2

(hQ1(n,m)− hQ2(n,m))2 +

N2∑
n=N1+1

hQ2(n,m)2

)

+

N2∑
m=N1+1

N2∑
n=2

hQ2(n,m)2.

Now, we want to split up the first sum over m between small and large values of

m. We shall then use our bounds derived in the previous section to get a bound for

∥X∥2. Let 2 ≤M < N1. Then

∥X∥2 =
M∑

m=2

(
N1∑
n=2

(hQ1(n,m)− hQ2(n,m))2 +

N2∑
n=N1+1

hQ2(n,m)2

)

+

N1∑
m=M+1

(
N1∑
n=2

(hQ1(n,m)− hQ2(n,m))2 +

N2∑
n=N1+1

hQ2(n,m)2

)

+

N2∑
m=N1+1

N2∑
n=2

hQ2(n,m)2

≤
M∑

m=2

(
N1∑
n=2

(
2am

3(2Q1 − n)2
+

2ζ(3)bm
π3(2Q1 − n)3

)2

+

N2∑
n=N1+1

(
am
4n2

+
7ζ(3)bm
4π3n3

)2
)

+

N1∑
m=M+1

U2
m

(
4

9

N∑
n=2

1

(2Q1 − n)4
+

1

16

N2∑
n=N1+1

1

n4

)
+

N2∑
m=N1+1

U2
m

N2∑
n=2

1

16n4
.

Here we note that, for k > 1,

N1∑
n=2

1

(2Q1 − n)k
≤

N1∑
n=2

1

(2N1 − n)k
≤
∫ N1

1

1

(2Q1 − t)k
dt ≤ 1

k − 1

1

Nk−1
1

,

and similarly

N2∑
n=N1+1

n−k ≤
∞∑

n=N1+1

n−k ≤
∫ ∞

N1

t−k dt ≤ 1

k − 1
Nk−1

1 .

77

4.4. Explicitly finding the O-constant

Hence,

∥X∥2 ≤
M∑

m=2

(
4

27N3
1

a2m +
2ζ(3)

3π3N4
1

ambm +
4ζ(3)2

5π6N5
1

b2m

+
1

48N3
1

a2m +
7ζ(3)

32π3N4
1

ambm +
49ζ(3)2

80π6N5
1

b2m

)
+

(
4

27
+

1

48

)
1

N3
1

N1∑
m=M+1

U2
m +

ζ(4)− 1

16

N2∑
m=N1+1

U2
m

=
73

432N3
1

M∑
m=2

a2m +
85ζ(3)

96π3N4
1

M∑
m=2

ambm +
113ζ(3)2

80π6N5
1

M∑
m=2

b2m

+
73

432N3
1

N1∑
m=M+1

U2
m +

ζ(4)− 1

16

N2∑
m=N1+1

U2
m.

To bound the sums of Um, we shall use our bound (4.15) and majorise the sums by

a geometric series. Taking our bound from (4.15) and squaring we have

|Um|2 ≤ dm

where

dm :=
π

2
exp

(
2m

(
2πY − 2πY

1
4
+ Y 2

))(3
Y
+m

(
3π(1 +

√
3) + 4π

Y 2 +
4π
Y 3

)
+m2 2π2

Y 4

e
√
λWir(

√
λ)

)2

.

Hence, for some M,N ∈ N with M < N , we have

N∑
m=M

|Um|2 ≤
∞∑

m=M

|Um|2 ≤
∞∑

m=M

dm ≤ dM

∞∑
k=0

(
dM+1

dM

)k

≤ d2M
dM − dM+1

.

Thus combining all this, we obtain the final bound of

∥X∥2 ≤ 73

432N3
1

M∑
m=2

a2m +
85ζ(3)

96π3N4
1

M∑
m=2

ambm +
113ζ(3)2

80π6N5
1

M∑
m=2

b2m

+
73

432N3
1

d2M+1

dM+1 − dM+2

+
π4 − 90

1440

d2N1+1

dN1+1 − dN1+2

,

78

4.4. Explicitly finding the O-constant

where

am :=

∣∣∣∣f ′
m

(
1

2

)∣∣∣∣ ,
bm :=

1

4

(∫ 1/2

0

f ′′′
m(t)2 dt

)1/2

,

dm :=
π

2
exp

(
2m

(
2πY − 2πY

1
4
+ Y 2

))(3
Y
+m

(
3π(1 +

√
3) + 4π

Y 2 +
4π
Y 3

)
+m2 2π2

Y 4

e
√
λWir(

√
λ)

)2

.

We see that this is of the required form for Theorem 4.3.1. In practice, when

implementing this as part of Hejhal’s algorithm, we numerically compute the am

and bm for 2 ≤ m ≤M in interval arithmetic.

We choose M such that we can use our lower bound effectively in Proposition

4.4.2. Explicitly, we need make sure our input values are greater than
√
λ, hence we

choose M such that

M =

⌈ √
λ

2πY

⌉
.

4.4.5 Computing bm

To numerically compute the integral appearing in the definition of bm, we shall use

the quadrature method described in Appendix B. As stated we shall implement this

in interval arithmetic. We recall the error bound for the quadrature method is

exp

(
4− 5n

log(5n)

)
sup

z∈D(0,2)

|f(z)|, (4.16)

where f is a holomorphic function on D(0, 2) = {z ∈ C : |z| ≤ 2}. By the maximum

modulus principle, we know that f attains its maximum on the boundary of D(0, 2),

i.e all z ∈ C such that |z| = 2. We recall we have

fm(t) =
Wir

(
2πmY
t2+Y 2

)
Wir(2πmY)

cos

(
2πmt

t2 + Y 2

)
,

for m > 0. We also recall that Wir(y) =
√
yKir(y). In the definition of bm, we

will be integrating the third derivative of this function. To numerically compute the

third derivative, we replace t by the polynomial t̃ = x + t. We first compute the

79

4.4. Explicitly finding the O-constant

power series of √
2πmY

t̃2 + Y 2
, Kir

(
2πmY

t̃2 + Y 2

)
and cos

(
2πmt̃

t̃2 + Y 2

)

separately and then multiply them together. Then, after scaling by 3!, the term for

the z3 term will give a numerical answer for the third derivative at t.

Now, using this to compute the error bound for the integral would be very slow,

so we should bound the error analytically. To begin, let ε > 0 and Cε = {z ∈ C |
|z − z0| < ε}, that is, the circle of radius ε and centred at z0 ∈ C. We have by

Cauchy’s theorem that

f (k)(z0) =
k!

2πi

∮
Cε(z0)

f(z)

(z − z0)k+1
dz

for some nice analytic f . Then we have the bound∣∣∣∣f (k)(z0)

k!

∣∣∣∣ ≤ sup
z∈Cε(z0)

|f(z)|ε−k.

To bound the supremum, we first fix a value for ε. For us f(z) = Wir(2πmY)fm(z).

To begin, using the bound of Wir(z) for complex z from Appendix A, we have

| cos(z)| ≤ cosh(Im(z)) and

|Wir(z)| ≤

√
π|z|

2Re(z)
e−Re(z),

for z ∈ C with Re(z) > 0. Hence,

|f(z)| =
∣∣∣∣Wir

(
2πm

Y ((z/Y)2 + 1)

)∣∣∣∣ ∣∣∣∣cos(2πmz

Y ((z/Y)2 + 1)

)∣∣∣∣
≤
√

π/2

|(z
Y
)2 + 1|Re(1

(z
Y
)2+1

)
exp

(
−Re

(
1

(z
Y
)2 + 1

))
cosh

(
Im

(
2πmz

Y ((z
Y
)2 + 1)

))

=
1

2

√
π/2

|(z
Y
)2 + 1|Re(1

(z
Y
)2+1

)

exp

2πm Im
(

1
z
Y
+i

)
Y

+ exp

2πm Im
(

1
− z

Y
+i

)
Y

 .

We could further try to refine this bound, but for our case this will be sufficient.

Thus, to compute the error bound, we first split up the circle centred at 0 of

80

4.5. Odd case

radius 2 into N intervals around the circle, where N is chosen such that

4− 5N

log(5N)
< B log 2,

where B is the number of bits of precision desired. We then bound our integrand

on each interval but choosing z0 to be the centre of each interval and ε to be half

the length of the interval. We just compute the above bound in interval arithmetic

with z0 being interpreted as a complex ball of radius ε centred at z0.

Note, we actually implemented this in Arb which technically represents complex

numbers in rectangles rather than balls, but this distinction will not affect the result

drastically.

We also note that the error bound (4.16) is for integrals taken between −1 and

1. In order to treat generic bounds, we need to scale and move the disk centred at 0

and of radius 2 to the disk centred at b−a and of radius a+b
2

where we now integrate

from a to b.

4.5 Odd case

The above analysis was concerned with looking at even Maass cusp forms, we can

generalise this for odd forms as well. Fix Y and Q. Let z(t) = x(t) + iY be a

horocycle below the fundamental domain, now with t ∈ [−1/2, 1/2]. We then let

z∗(t) = x∗(t)+ iy∗(t) to be the PSL(2,Z)-pullback into the full fundamental domain

F of PSL(2,Z). We then define, for m ∈ Z,

fm(t) =
Wir(2πmy

∗(t))

Wir(2πmY)
sin(2πmx∗(t)).

Since we are dealing with the whole fundamental domain F , the pullback of the

horocycle is not continuous which means our definition of fm(t) is not continuous

for all 0 < Y <
√
3/2. Not all is lost however, since we will show there are specific

values of Y that will give us continuity. To begin, similar to the even case, restrict
1

2
√
3
≤ Y <

√
3
2
, then we can write

fm(t) =
Wir(2πmy

∗(t))

Wir(2πmY)
sin(2πmx∗(t)) = −

Wir

(
2πmY
t2+Y 2

)
Wir(2πmY)

sin

(
2πmt

t2 + Y 2

)
. (4.17)

We observe that if we now choose Y = 1
2
or Y = 1

2
√
3
, then fm(±1/2) = 0 for all

m, that is it vanishes at the endpoints of the horocycle. Since fm(t) will also vanish

81

4.5. Odd case

Y = 1
2

Y = 1
2
√
3

Figure 4.1: Plot of horocycles z(t) = t+ iY with the values of Y = 1
2
and Y = 1

2
√
3

that make the odd case work. The red line is the horocyle and the blue line is its
pullback. We note that these figures were made by computing z(t) and its pullback
on a certain number of points, which means it does not illustrate the Pac-Man-like
crossings of the boundaries of the fundamental domain.

when crossing over the fundamental domain, we get that we have continuity of the

pullback and fm for these values. Plots of these horocycles with their pullbacks are

given in Figure 4.1. This will allow us to perform integration by parts again. From

now on, we shall assume Y = 1
2
or Y = 1

2
√
3
.

Next, define for n ∈ Z≥0,

hQ(n,m) =


2

Q

Q∑
j=1

fm

(
j − 1

2

2Q

)
sin

(
2πn

j − 1
2

2Q

)
if n > 0,

1

Q

Q∑
j=1

fm

(
j − 1

2

2Q

)
if n = 0.

(4.18)

82

4.5. Odd case

Further defining

HN,Q = (δnm − hQ(n,m))2≤n,m≤N and bN,Q = (hQ(n, 1))2≤n≤N ,

we can set up the Hejhal system as follows,

HN,Q


x2
...

xN

 = bN,Q.

Define

h∞(n,m) = lim
Q→∞

hQ(n,m) =


4

∫ 1/2

0

fm(t) sin(2πnt) dt if n > 0,

2

∫ 1/2

0

fm(t) dt if n = 0,

(4.19)

so that

fm(t) =
∞∑
n=0

h∞(n,m) sin(2πnt).

For any t at which fm(t) is smooth, we have

∂k

∂tk
fm(t) ≪r,Y,k m

ke
−2πm

(√
3

2
−Y

)
≪r,Y,k e

−δm,

for any fixed δ ∈ (0, 2π(
√
3
2
− Y)).

Since fm(t) is continuous, we can again perform integration by parts twice to the

integral above to obtain∫ 1/2

0

fm(t) sin(2πnt)dt =
fm(0)

2πn
− fm(1/2)

2πn
cos(πn)− 1

(2πn)2

∫ 1/2

0

f ′′
m(t) sin(2πnt)dt.

We now note that fm(0) = 0, since the pullback of z(0) = iY is just the map

S(z) = −1/z. Hence z∗(0) = S(iY) = i/Y , which is always in the fundamental

domain for all Y ∈ (0,
√
3/2). We see that Re(z∗(0)) = 0, thus the sin term vanishes

in the definition of fm(t). Using this, we actually obtain

∫ 1/2

0

fm(t) sin(2πnt)dt = −fm(1/2)
2πn

cos(πn)− 1

(2πn)2

∫ 1/2

0

f ′′
m(t) sin(2πnt)dt.

83

4.5. Odd case

To get the O(n−2) required, we note the fact that for our choices for Y , we have

that fm(1/2) = 0 for all m. Thus, we get that∫ 1/2

0

fm(t) sin(2πnt)dt = − 1

(2πn)2

∫ 1/2

0

f ′′
m(t) sin(2πnt)dt, (4.20)

giving us the O(n−2) required. Similar to the even case, we shall use (4.20) for large

m and the bound from applying integration by parts a third time for small m. In

fact, we can apply integration by parts a third time and get O(n−3) overall, however

we do not do this since we can re-use the bounds derived in Section 4.4 for O(n−2).

4.5.1 Large m

From the definition of h∞(n,m) and (4.20), we have

h∞(n,m) = − 1

(πn)2

∫ 1/2

0

f ′′
m(t) sin(2πnt)dt.

Hence,

|h∞(n,m)| ≤ Um

(πn)2
,

where

Um :=

∫ 1/2

0

|f ′′
m(t)|dt.

Here we note that we can just directly use our bound from Section 4.4.2 to this

integral, since the only differences are the sines instead of cosines and some minus

signs from this, all of which get removed when we crash through with absolute

values. Hence,

|Um| ≤
√
π

2
exp

(
m

(
2πY − 2πY

1
4
+ Y 2

)) 3
Y
+m

(
4π
Y 2 +

4π
Y 3

)
+m2 2π2

Y 4

e
√
λWir(

√
λ)

.

84

4.5. Odd case

4.5.2 Small m

For small m, we shall do integration by parts a third time to (4.20), noting that

f ′′
m(0) = 0 by similar reasoning to before, to get

h∞(n,m) =

∫ 1/2

0

fm(t) sin(2πnt)dt

=
f ′′
m(1/2)

2(πn)3
(−1)n − 1

2(πn)3

∫ 1/2

0

f ′′′
m(t) cos(2πnt)dt.

Now, using the Cauchy–Schwartz inequality, we can bound the integral by(∫ 1/2

0

f ′′′
m(t) cos(2πnt)dt

)2

≤
∫ 1/2

0

f ′′′
m(t)2dt

∫ 1/2

0

cos2(2πnt)dt =
1

4

∫ 1/2

0

f ′′′
m(t)2dt.

Hence, we can bound

|h∞(n,m)| ≤ bm
(πn)3

,

where

bm :=
|f ′′

m(1/2)|
2

+
1

4

(∫ 1/2

0

|f ′′′
m(t)|dt

)1/2

.

Now, we can just apply the same bounds derived in Section 4.4.3, with am = 0 for

all m and the bm choosen above.

4.5.3 Explicit bound for ∥X∥

Applying the exact same idea from Section 4.4.4, we get that

∥X∥2 ≤ 73

432N3
1

d2M+1

dM+1 − dM+2

+
π4 − 90

1440

d2N1+1

dN1+1 − dN1+2

+
113ζ(3)2

80π6N5
1

M∑
m=2

b2m,

where

bm :=
|f ′′

m(1/2)|
2

+
1

4

(∫ 1/2

0

|f ′′′
m(t)|dt

)1/2

,

dm :=
π

2
exp

(
2m

(
2πY − 2πY

1
4
+ Y 2

))(3
Y
+m

(
4π
Y 2 +

4π
Y 3

)
+m2 2π2

Y 4

e
√
λWir(

√
λ)

)2

.

85

4.5. Odd case

We note, that this is only valid for the two values Y = 1
2
or Y = 1

2
√
3
.

4.5.4 Computational results

We implemented the test from Theorem 4.3.1 for the first 4 Laplace eigenvalues of

PSL(2,Z), each with a rigorous error bound of 10−96. These results are summarised

in the following table. The numbers in the N1 column denote the smallest value of

N1 such that we are in case (i) of Theorem 4.3.1.

Laplace eigenvalue R parity M N1

9.53369526135 . . . odd 6 7

12.1730083246 . . . odd 7 13

13.7797513518 . . . even 8 24

14.3585095182 . . . odd 8 19

86

Appendix A

K-Bessel Bounds

An important function we use throughout is the K-Bessel function and we require

several bounds of this function and its derivatives. To begin, we recall the definition

of the K-Bessel function.

Definition A.0.1 (K-Bessel function). Let x be a positive real number and ν ∈ C.
Then we define the K-Bessel function by

Kν(x) :=
1

2

∫ ∞

−∞
e−x cosh(t)+νt dt =

∫ ∞

0

cosh(νt)e−x cosh(t) dt.

We have that y = Kν(x) satisfies the differential equation

y′′ +
y′

x
−
(
1 +

ν2

x2

)
y = 0. (A.1)

We shall now assume that ν is purely imaginary, i.e. ν = ir for some real r.

We shall also mainly be considering the Whittaker function of the form Wir(x) =√
xKir(x). We now have the following proposition giving bounds for this function

and its derivatives with respect to x.

Proposition A.0.1. We have

|Wir(x)| ≤
√
π

2
e−x for all x > 0 and r > 0,

|W ′
ir(x)| ≤

√
π

2
e−x for all x ≥ 1 and r ≥ 5,

|W ′′
ir(x)| ≤

√
π

2
e−x for all x ≥ 1 and r ≥ 5.

Proof. Using the fact that cosh(t) ≥ 1 + t2

2
for all t > 0, we have

|Kir(x)| =
∣∣∣∣12
∫ ∞

−∞
e−x cosh(t)+irt dt

∣∣∣∣ ≤ 1

2

∫ ∞

−∞

∣∣e−x cosh(t)+irt
∣∣ dt = 1

2

∫ ∞

−∞
e−x cosh(t) dt

≤ 1

2
e−x

∫ ∞

−∞
e−

xt2

2 dt =

√
π

2x
e−x.

87

Hence

|Wir(x)| ≤
√
π

2
e−x.

Define λ = 1
4
+ r2. Then by (A.1) we have the following differential equation

W ′′
ir(x) =

(
1− λ

x2

)
Wir(x).

For x >
√
λ/2 the bound is clear for the second derivative by using the bound

for |Wir(x)|. For 1 ≤ x ≤
√
λ/2 we use the following result from Proposition 2

in [BST13], which states that for all 1 ≤ x < r we have

|Kir(x)| < e−(π/2)r


5

4
√
r2 − x2

if x ≤ r − 1

2
r

1
3 ,

4r−
1
3 if x ≥ r − 1

2
r

1
3 .

Hence

|W ′′
ir(x)| =

∣∣∣∣1− λ

x2

∣∣∣∣ |Wir(x)| ≤
∣∣∣∣ λx2 − 1

∣∣∣∣√x 5

(r2 − x2)1/4
e−(π/2)r.

Now we want a bound of the form |W ′′
ir(x)| ≤ C exp(−x) for some C ∈ R. Hence,

we want to bound∣∣∣∣ λx2 − 1

∣∣∣∣√x 5

(r2 − x2)1/4
e−(π/2)rex =

r2 + 1
4
− x2

x3/2
5

(r2 − x2)1/4
e−(π/2)rex.

The first fraction obtains its maximum at x = 1 and the second fraction obtains its

maximum at x =
√
λ/2. Also, note that ex ≤ e

√
λ/2. Thus

r2 + 1
4
− x2

x3/2
5

(r2 − x2)1/4
e−(π/2)rex ≤ 5(r2 − 3/4)

(r2/2− 1/8)1/4
e−(πr/2−

√
r2/2+1/8) =: A(r).

This obtains its maximum of approximately 2.59009 at r ≈ 2.12008. Notably,

A(r) ≤
√
π/2 for r ≳ 4.3268. Hence,

|W ′′
ir(x)| ≤

√
π

2
e−x

88

for x ≥ 1 and r ≥ 5. To get a bound for the first derivative, we have that

W ′
ir(x) = −

∫ ∞

x

W ′′
ir(y)dy.

Thus,

|W ′
ir(x)| ≤

∫ ∞

x

|W ′′
ir(y)|dy ≤

√
π

2

∫ ∞

x

e−ydy =

√
π

2
e−x,

for all x ≥ 1 and r ≥ 5.

We shall also need a lower bound for the Whittaker function in the exponential

region.

Proposition A.0.2. For x ≥ x0 ≥
√
λ, we have

Wir(x) ≥ Wir(x0)e
x0−x > 0.

Proof. By the differential equation, we have W ′′
ir(x) = (1−λx−2)Wir(x). Using this,

we get that

W ′
ir(y) = −

∫ ∞

y

(1− λx−2)Wir(x) dx

and

Wir(z) = −
∫ ∞

z

W ′
ir(y) dy =

∫ ∞

z

∫ ∞

y

(1− λx−2)Wir(x) dx dy

=

∫ ∞

z

(x− z)(1− λx−2)Wir(x) dx. (A.2)

Before we can continue, we shall state the following asymptotic expansion of

Wir(x) from [GR07, 8.451 6]

Wir(x) =

√
π

2
e−x

[
n−1∑
k=0

Γ
(
ir + k + 1

2

)
(2x)kΓ

(
ir − k + 1

2

)
k!

+O(x−n)

]
. (A.3)

First, we show that Wir(x) > 0 for x ≥
√
λ. Suppose that is not the case. Then,

by (A.3), we see that Wir(x) > 0 for sufficiently large x. Thus, there must exist

89

some z ≥
√
λ such that Wir(z) = 0 and Wir(x) > 0 for all x > z. However,

0 = Wir(z) =

∫ ∞

z

(x− z)(1− λx−2)Wir(x) dx > 0,

for all x > z, which is a contradiction. Hence, Wir(x) > 0 for x ≥
√
λ.

Next, let g(x) = exWir(x) and h(x) = (1 − λx−2)g(x). We aim to show that

g′(x) > 0 for all x ≥
√
λ. Again, suppose this is not the case. Using (A.3),

multiplying by ex and then differentiating with respect to x, we get that

g′(x) = −
√
π

2

[
n−2∑
k=1

Γ
(
ir + k + 1

2

)
2kxk+1Γ

(
ir − k + 1

2

)
(k − 1)!

+O(x−n)

]
.

We note that Γ(ir + 3/2)/Γ(ir − 1/2) = −r2 − 1/4, hence the first term of this

expansion is actually positive. From this asymptotic we can see that g′(x) > 0

for sufficiently large x. Thus, there exists some z ≥
√
λ such that g′(z) = 0 and

g′(x) > 0 for x > z, and it follows that h′(x) > 0 for x > z. Rewriting (A.2) in

terms of g and h, we get that

g(z) =

∫ ∞

z

(x− z)ez−xh(x) dx =

∫ ∞

0

te−th(z + t) dt.

However,

0 = g′(z) =

∫ ∞

0

te−th′(z + t) dt > 0,

which is again a contradiction. Hence g′(x) > 0 for all x ≥
√
λ, that is g(x) =

exWir(x) is always increasing for x ≥
√
λ. This means there exists some x ≥ x0 ≥√

λ such that

g(x) ≥ g(x0) = Wir(x0)e
x0 ,

which gives the result.

We can extend the definition of Kir(z) to z ∈ C with Re(z) > 0, and the

corresponding Whittaker function by Wir(z) =
√
|z|Kir(z). In a similar way to the

real case, we can also get an upper bound for the absolute value of this.

90

Proposition A.0.3. For all z ∈ C with Re(z) > 0 and r > 0 we have

|Wir(z)| ≤

√
π|z|

2Re(z)
e−Re(z).

Proof. Similar to the real case, using the fact that cosh(t) ≥ 1+ t2

2
for all t > 0 and

the definition of Kir, we have

|Kir(z)| =
∣∣∣∣12
∫ ∞

−∞
e−z cosh(t)+irt dt

∣∣∣∣ ≤ 1

2

∫ ∞

−∞

∣∣e−z cosh(t)+irt
∣∣ dt = 1

2

∫ ∞

−∞
e−Re(z) cosh(t) dt

≤ 1

2
e−Re(z)

∫ ∞

−∞
e−

Re(z)t2

2 dt =

√
π

2Re(z)
e−Re(z).

Hence,

Wir(z) =
√

|z|Kir(z) ≤

√
π|z|

2Re(z)
e−Re(z).

91

Appendix B

Rigorous numerical quadrature

Throughout our work, we require the need to numerically compute integrals with

rigorous error bounds. For this we use the following theorem from [Mol16].

Theorem B.0.1 (Molin). Let f be a holomorphic function on the disk D(0, 2) =

{z ∈ C : |z| ≤ 2}. Then we have∣∣∣∣∣
∫ 1

0

f(x) dx−
k∑

n=−k

xkf(ak)

∣∣∣∣∣ ≤ exp

(
4− 5n

log(5n)

)
sup

z∈D(0,2)

|f(z)|,

where h = log(5n)
n

, ak =
h cosh(kh)

cosh(sinh(kh))2
and xk = tanh(sinh(kh)).

The benefit of this method compared to others, is that it can be easily imple-

mented in interval arithmetic due to the explicit form of the error. We note that in

this setup, the supremum of |f(z)| with z ∈ D(0, 2) actually occurs on the boundary

of the disk when |z| = 2 by the maximum modulus principle. To implement the

rigorous error, we either bound it analytically and use that as our error bound or

we can numerically compute it in interval arithmetic.

To implement this error numerically, we first divide the interval [0, 1] into n

intervals labelled θn, and then, using interval arithmetic, compute each

|f(2 exp(2πiθn))|

and then take the maximum of these intervals. We choose n such that

4− 5n

log(5n)
< B log 2,

where B is the number of bits of precision desired.

To implement this theorem with general integral limits, we first rescale the inte-

gral in the following way∫ b

a

f(x) dx =
b− a

2

∫ 1

−1

f

(
b− a

2
y +

a+ b

2

)
dy,

where b > a. If after rescaling the disk within the error bound has a singularity

within it, we can compute the integral piecewise to help minimise the error.

92

Bibliography

[AL70] A. O. L. Atkin and J. Lehner. Hecke operators on Γ0(m). Math. Ann.,
185:134–160, 1970. (Cited p. 11).

[AST12] Ralf Aurich, Frank Steiner, and Holger Then. Numerical computation
of Maass waveforms and an application to cosmology. In Hyperbolic ge-
ometry and applications in quantum chaos and cosmology, volume 397 of
London Math. Soc. Lecture Note Ser., pages 229–269. Cambridge Univ.
Press, Cambridge, 2012. (Cited p. 3).

[BBD+23] Ce Bian, Andrew R. Booker, Austin Docherty, Michael J Jacobson, and
Andrei Seymour-Howell. Unconditional computation of the class groups
of real quadratic fields. Preprint, 2023. (Cited p. 40).

[BGGS97] E. B. Bogomolny, B. Georgeot, M.-J. Giannoni, and C. Schmit. Arith-
metical chaos. Phys. Rep., 291(5-6):219–324, 1997. (Cited p. 3).

[BL17] Andrew R. Booker and Min Lee. The Selberg trace formula as a Dirichlet
series. Forum Math., 29(3):519–542, 2017. (Cited pp. 23, 27, 41, 42,
and 44).

[BLS20] Andrew R. Booker, Min Lee, and Andreas Strömbergsson. Twist-
minimal trace formulas and the Selberg eigenvalue conjecture. J. Lond.
Math. Soc. (2), 102(3):1067–1134, 2020. (Cited p. 14).

[Boo06] Andrew R. Booker. Quadratic class numbers and character sums. Math.
Comp., 75(255):1481–1492, 2006. (Cited p. 39).

[Bor92] Richard E. Borcherds. Monstrous moonshine and monstrous Lie super-
algebras. Invent. Math., 109(2):405–444, 1992. (Cited p. 1).

[BP19] Andrew R. Booker and David J. Platt. Turing’s method for the Selberg
zeta-function. Comm. Math. Phys., 365(1):295–328, 2019. (Cited pp. 50
and 51).

[BS05] Johannes Buchmann and Arthur Schmidt. Computing the structure of
a finite abelian group. Math. Comp., 74(252):2017–2026, 2005. (Cited
p. 59).

[BS07] Andrew R. Booker and Andreas Strömbergsson. Numerical computa-
tions with the trace formula and the Selberg eigenvalue conjecture. J.
Reine Angew. Math., 607:113–161, 2007. (Cited p. 3).

[BST13] Andrew R. Booker, Andreas Strömbergsson, and Holger Then. Bounds
and algorithms for the K-Bessel function of imaginary order. LMS Jour-
nal of Computation and Mathematics, 16:78–108, 2013. (Cited p. 88).

[BSV06] Andrew R. Booker, Andreas Strömbergsson, and Akshay Venkatesh. Ef-
fective computation of Maass cusp forms. Int. Math. Res. Not., pages
Art. ID 71281, 34, 2006. (Cited pp. 2, 50, 64, and 72).

[BT18] Andrew R. Booker and Holger Then. Rapid computation of L-functions
attached to Maass forms. Int. J. Number Theory, 14(5):1459–1485, 2018.
(Cited pp. 37 and 56).

[Bum97] Daniel Bump. Automorphic forms and representations, volume 55 of
Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 1997. (Cited p. 2).

93

Bibliography

[BV07] Johannes Buchmann and Ulrich Vollmer. Binary quadratic forms, vol-
ume 20 of Algorithms and Computation in Mathematics. Springer,
Berlin, 2007. An algorithmic approach. (Cited p. 39).

[Car71] Pierre Cartier. Some numerical computations relating to automorphic
functions. Computers in Number Theory (A. O. L. Atkin and B. J.
Birch, eds.), Academic Press, pages 37–48, 1971. (Cited p. 2).

[Chi22] Kieran Child. Computation of Automorphic Forms. PhD thesis, Univer-
sity of Bristol, 2022. (Cited p. 2).

[CKM+17] Henry Cohn, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko,
and Maryna Viazovska. The sphere packing problem in dimension 24.
Ann. of Math. (2), 185(3):1017–1033, 2017. (Cited p. 1).

[CL84] H. Cohen and H. W. Lenstra, Jr. Heuristics on class groups of num-
ber fields. In Number theory, Noordwijkerhout 1983 (Noordwijkerhout,
1983), volume 1068 of Lecture Notes in Math., pages 33–62. Springer,
Berlin, 1984. (Cited p. 39).

[CS17] Henri Cohen and Fredrik Strömberg. Modular forms: A Classical Ap-
proach, volume 179 of Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2017. (Cited p. 2).

[Del74] Pierre Deligne. La conjecture de Weil. I. Inst. Hautes Études Sci. Publ.
Math. no. 43, pages 273–307, 1974. (Cited p. 14).

[dHJW07] R. de Haan, M. J. Jacobson, Jr., and H. C. Williams. A fast, rigorous
technique for computing the regulator of a real quadratic field. Math.
Comp., 76(260):2139–2160, 2007. (Cited pp. 49 and 59).

[Gol06] Dorian Goldfeld. Automorphic forms and L-functions for the group
GL(n,R), volume 99 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 2006. With an appendix by
Kevin A. Broughan. (Cited p. 2).

[GR07] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and
products. Elsevier/Academic Press, Amsterdam, seventh edition, 2007.
Translated from the Russian, Translation edited and with a preface by
Alan Jeffrey and Daniel Zwillinger, With one CD-ROM (Windows, Mac-
intosh and UNIX). (Cited p. 89).

[Hej83] Dennis A. Hejhal. The Selberg trace formula for PSL(2, R). Vol. 2,
volume 1001 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
1983. (Cited pp. 14 and 50).

[Hej99] Dennis A. Hejhal. On eigenfunctions of the Laplacian for Hecke triangle
groups. In Emerging applications of number theory (Minneapolis, MN,
1996), volume 109 of IMA Vol. Math. Appl., pages 291–315. Springer,
New York, 1999. (Cited pp. 2, 50, 53, and 61).

[HM89] James L. Hafner and Kevin S. McCurley. A rigorous subexponential al-
gorithm for computation of class groups. J. Amer. Math. Soc., 2(4):837–
850, 1989. (Cited p. 39).

[Iwa02] Henryk Iwaniec. Spectral methods of automorphic forms, volume 53
of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI; Revista Matemática Iberoamericana, Madrid, second
edition, 2002. (Cited p. 2).

94

Bibliography

[Joh17] F. Johansson. Arb: efficient arbitrary-precision midpoint-radius inter-
val arithmetic. IEEE Transactions on Computers, 66:1281–1292, 2017.
(Cited pp. 3, 33, and 52).

[JRW06] Michael J. Jacobson, Jr., Shantha Ramachandran, and Hugh C.
Williams. Numerical results on class groups of imaginary quadratic
fields. In Algorithmic number theory, volume 4076 of Lecture Notes in
Comput. Sci., pages 87–101. Springer, Berlin, 2006. (Cited pp. 39, 40,
and 52).

[Kim03] Henry H. Kim. Functoriality for the exterior square of GL4 and the
symmetric fourth of GL2. J. Amer. Math. Soc., 16(1):139–183, 2003.
With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim
and Peter Sarnak. (Cited pp. 14, 21, and 56).

[Lan80] Robert P. Langlands. Base change for GL(2). Annals of Mathematics
Studies, No. 96. Princeton University Press, Princeton, N.J.; University
of Tokyo Press, Tokyo, 1980. (Cited p. 2).

[Len82] H. W. Lenstra, Jr. On the calculation of regulators and class num-
bers of quadratic fields. In Number theory days, 1980 (Exeter, 1980),
volume 56 of London Math. Soc. Lecture Note Ser., pages 123–150. Cam-
bridge Univ. Press, Cambridge, 1982. (Cited p. 39).

[LS94] W. Luo and P. Sarnak. Number variance for arithmetic hyperbolic sur-
faces. Comm. Math. Phys., 161(2):419–432, 1994. (Cited p. 19).

[LV07] Elon Lindenstrauss and Akshay Venkatesh. Existence and Weyl’s law for
spherical cusp forms. Geom. Funct. Anal., 17(1):220–251, 2007. (Cited
p. 2).

[Maa49] Hans Maass. Über eine neue Art von nichtanalytischen automorphen
Funktionen und die Bestimmung Dirichletscher Reihen durch Funktion-
algleichungen. Math. Ann., 121:141–183, 1949. (Cited p. 1).

[Mol16] Pascal Molin. Intégration numérique par la méthode double-
exponentielle, 2016. https://hal.archives-ouvertes.fr/

hal-00491561v3. (Cited p. 92).
[Ris04] Morten S. Risager. Asymptotic densities of Maass newforms. J. Number

Theory, 109(1):96–119, 2004. (Cited pp. 13 and 32).
[Rub] Michael O. Rubenstein. lcalc. http://code.google.com/p/l-calc/.

(Cited p. 37).
[Sar87] Peter Sarnak. Statistical properties of eigenvalues of the Hecke operators.

In Analytic number theory and Diophantine problems (Stillwater, OK,
1984), volume 70 of Progr. Math., pages 321–331. Birkhäuser Boston,
Boston, MA, 1987. (Cited pp. 15, 34, and 36).

[Sel56] Atle Selberg. Harmonic analysis and discontinuous groups in weakly
symmetric Riemannian spaces with applications to Dirichlet series. J.
Indian Math. Soc, pages 47–87, 1956. (Cited pp. 1 and 13).

[SH22] Andrei Seymour-Howell. Rigorous computation of Maass cusp forms
of squarefree level. Res. Number Theory, 8(4):Paper No. 83, 15, 2022.
(Cited p. 16).

[Ste94] Gunther Steil. Eigenvalues of the Laplacian and of the Hecke operators
for PSL(2,Z). DESY report 94–028, Hamburg 1994. (Cited p. 19).

95

https://hal.archives-ouvertes.fr/hal-00491561v3
https://hal.archives-ouvertes.fr/hal-00491561v3

Bibliography

[Str05] Fredrik Strömberg. Computational aspects of Maass Waveforms. PhD
thesis, Uppsala University, 2005. (Cited pp. 2, 53, 59, 61, and 63).

[Str16] Andreas Strömbergsson. Explicit trace formula for Hecke operators.
Preprint, 2016. (Cited pp. 3, 16, 23, and 27).

[The20] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.1.0), 2020. https://www.sagemath.org. (Cited p. 33).

[The22] The PARI Group, Univ. Bordeaux. PARI/GP version 2.13.4, 2022.
available from http://pari.math.u-bordeaux.fr/. (Cited p. 33).

[Tun81] Jerrold Tunnell. Artin’s conjecture for representations of octahedral
type. Bull. Amer. Math. Soc. (N.S.), 5(2):173–175, 1981. (Cited p. 2).

[Via17] Maryna S. Viazovska. The sphere packing problem in dimension 8. Ann.
of Math. (2), 185(3):991–1015, 2017. (Cited p. 1).

[Wil95] Andrew Wiles. Modular elliptic curves and Fermat’s last theorem. Ann.
of Math. (2), 141(3):443–551, 1995. (Cited p. 1).

96

http://pari.math.u-bordeaux.fr/

	Introduction
	Background
	Hecke congruence subgroups
	Maass forms
	Fourier series
	Involutions
	Reflection operator
	Hecke operators
	Oldforms and newforms
	L-function
	Selberg Trace formula
	Open conjectures

	Trace formula algorithm for Maass forms
	Trace Formula Algorithm
	The Selberg Trace Formula for level 1
	The Selberg Trace Formula for squarefree level N > 1
	Choice of test function
	Computational results

	Unconditional computation of real quadratic class numbers
	Verification algorithm
	Rigorous computation of the Hecke eigenvalues
	Computation

	Rigorous implementation of Hejhal's algorithm
	Hejhal's algorithm for level 1
	Implementing Hejhal's algorithm rigorously to improve precision
	Proof of well-conditioned Hejhal system for even forms
	Explicitly finding the O-constant
	Odd case

	K-Bessel Bounds
	Rigorous numerical quadrature

